Estimate the interfacial heat transfer coefficient for evaporation of a thin film of saturated liquid water at atmospheric pressure. The liquid film rests on a flat, solid surface to which a constant and uniform heat flux of 150 kW/m² is applied. The accommodation coefficient may be taken to be 0.05. If the liquid film thickness is 0.2 mm, compare the interfacial vaporization resistance with the conduction resistance through the liquid film.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter9: Heat Transfer With Phase Change
Section: Chapter Questions
Problem 9.25P
Question
Estimate the interfacial heat transfer coefficient for evaporation of a thin film of
saturated liquid water at atmospheric pressure. The liquid film rests on a flat, solid
surface to which a constant and uniform heat flux of 150 kW/m? is applied. The
accommodation coefficient may be taken to be 0.05. If the liquid film thickness is 0.2
mm, compare the interfacial vaporization resistance with the conduction resistance
through the liquid film.
Transcribed Image Text:Estimate the interfacial heat transfer coefficient for evaporation of a thin film of saturated liquid water at atmospheric pressure. The liquid film rests on a flat, solid surface to which a constant and uniform heat flux of 150 kW/m? is applied. The accommodation coefficient may be taken to be 0.05. If the liquid film thickness is 0.2 mm, compare the interfacial vaporization resistance with the conduction resistance through the liquid film.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning