The water of a 14’ × 48’ metal frame pool can drain from the pool through an opening at the side of the pool. The opening is about h = 1.05 m below the water level. The capacity of the pool is V = 3740 gallons, the pool can be drained in t = 10.2 mins. P0 is the pressure of the atmosphere. ρ is the density of the water. a. Write the Bernoulli’s equation of the water at the top of the pool in terms of P0, ρ, h. Assuming the opening is the origin. b. Write the Bernoulli’s equation of the water at the opening of the pool in terms of P0, ρ, h and v, where v is the speed at which the water leaves the opening. Assuming the opening is the origin. c. Express v2 in terms of g and h. d. Calculate the numerical value of v in meters per second. e. Express the flow rate of the water in terms of V and t. f. Express the cross-sectional area of the opening, A, in terms of V, v and t. g. Calculate the numerical value of A in cm2
The water of a 14’ × 48’ metal frame pool can drain from the pool through an opening at the side of the pool. The opening is about h = 1.05 m below the water level. The capacity of the pool is V = 3740 gallons, the pool can be drained in t = 10.2 mins. P0 is the pressure of the atmosphere. ρ is the density of the water.
a. Write the Bernoulli’s equation of the water at the top of the pool in terms of P0, ρ, h. Assuming the opening is the origin.
b. Write the Bernoulli’s equation of the water at the opening of the pool in terms of P0, ρ, h and v, where v is the speed at which the water leaves the opening. Assuming the opening is the origin.
c. Express v2 in terms of g and h.
d. Calculate the numerical value of v in meters per second.
e. Express the flow rate of the water in terms of V and t.
f. Express the cross-sectional area of the opening, A, in terms of V, v and t.
g. Calculate the numerical value of A in cm2
Step by step
Solved in 9 steps with 1 images