The Wall Street Journal reported that 33% of taxpayers with adjusted gross incomes between $30,000 and $60,000 itemized deductions on their federal income tax return. The mean amount of deductions for this population of taxpayers was $16,642. Assume the standard deviation is σ = $2400. a. What is the probability that a sample of taxpayers from this income group who have itemized deductions will show a sample mean within $200 of the population mean for each of the following sample sizes: 30, 50, 100, and 400? b. What is the advantage of a larger sample size when attempting to estimate the population mean?
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
The Wall Street Journal reported that 33% of taxpayers with adjusted gross incomes between $30,000 and $60,000 itemized deductions on their federal income tax return. The
Trending now
This is a popular solution!
Step by step
Solved in 5 steps