Suppose that the distance of fly balls hit to the outfield (in baseball) is normally distributed with a mean of 243 feet and a standard deviation of 54 feet. Use your graphing calculator to answer the following questions. Write your answers in percent form. Round your answers to the nearest tenth of a percent. a) If one fly ball is randomly chosen from this distribution, what is the probability that this ball traveled fewer than 192 feet? P(fewer than 192 feet) = b) If one fly ball is randomly chosen from this distribution, what is the probability that this ball traveled more than 210 feet? P(more than 210 feet) =
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images