The vectors v, = -4 and v, = 6 form an orthogonal basis for W. %3D 3. Find an orthonormal basis for W. 3. 3.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Orthogonal Basis Calculation**

**Problem Statement:**
The vectors \(\mathbf{v}_1 = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}\) and \(\mathbf{v}_2 = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}\) form an orthogonal basis for \(W\). Find an orthonormal basis for \(W\).

**Solution:**
To find the orthonormal basis, we need to normalize the given orthogonal vectors. 

1. **Normalization of \(\mathbf{v}_1\):**
   \[
   \|\mathbf{v}_1\| = \sqrt{3^2 + (-4)^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2}.
   \]
   Thus, the normalized vector \(\mathbf{u}_1\) is:
   \[
   \mathbf{u}_1 = \frac{1}{5\sqrt{2}} \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix} = \begin{pmatrix} \frac{3}{5\sqrt{2}} \\ \frac{-4}{5\sqrt{2}} \\ \frac{5}{5\sqrt{2}} \end{pmatrix}.
   \]

2. **Normalization of \(\mathbf{v}_2\):**
   \[
   \|\mathbf{v}_2\| = \sqrt{3^2 + 6^2 + 3^2} = \sqrt{9 + 36 + 9} = \sqrt{54} = 3\sqrt{6}.
   \]
   Thus, the normalized vector \(\mathbf{u}_2\) is:
   \[
   \mathbf{u}_2 = \frac{1}{3\sqrt{6}} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{3\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}.
   \]

**Result:**
The orthonormal basis of the subspace spanned by
Transcribed Image Text:**Orthogonal Basis Calculation** **Problem Statement:** The vectors \(\mathbf{v}_1 = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}\) and \(\mathbf{v}_2 = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}\) form an orthogonal basis for \(W\). Find an orthonormal basis for \(W\). **Solution:** To find the orthonormal basis, we need to normalize the given orthogonal vectors. 1. **Normalization of \(\mathbf{v}_1\):** \[ \|\mathbf{v}_1\| = \sqrt{3^2 + (-4)^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2}. \] Thus, the normalized vector \(\mathbf{u}_1\) is: \[ \mathbf{u}_1 = \frac{1}{5\sqrt{2}} \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix} = \begin{pmatrix} \frac{3}{5\sqrt{2}} \\ \frac{-4}{5\sqrt{2}} \\ \frac{5}{5\sqrt{2}} \end{pmatrix}. \] 2. **Normalization of \(\mathbf{v}_2\):** \[ \|\mathbf{v}_2\| = \sqrt{3^2 + 6^2 + 3^2} = \sqrt{9 + 36 + 9} = \sqrt{54} = 3\sqrt{6}. \] Thus, the normalized vector \(\mathbf{u}_2\) is: \[ \mathbf{u}_2 = \frac{1}{3\sqrt{6}} \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{3\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}. \] **Result:** The orthonormal basis of the subspace spanned by
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,