The vector b is in the subspace spanned by the columns of A when __ has a solution. The vector c is in the row space of A when __ has a solution. True or false: If the zero vector is in the row space, the rows are dependent.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

The vector b is in the subspace spanned by the columns of A when __ has a solution. The vector c is in the row space of A when __ has a solution. True or false: If the zero vector is in the row space, the rows are dependent.

Expert Solution
Step 1

The definition of row space and column space of a matrix is given as follows.

A column space of matrix A is the space that is spanned by columns of A.

The row space of matrix A is the space spanned by rows of A.

Step 2

We know that, SpanA=Ax:xn.

Thus, if vector bSpanA is equivalent to asking if there exists a vector x such that Ax=b.

The vector b is in the subspace spanned by the columns of A when Ax=b has a solution.

We know that column space of A is equal to the row space of AT.

The vector c is in the row space of A when ATy=c has a solution.

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,