The top surface of the passenger car of a train moving at a velocity of 115 km/h is 2.8 m wide and 8 m long. The top surface is absorbing solar radiation at a rate of 380 W/m2 and the temperature of the ambient air is 30°C. Assuming the roof of the car to be perfectly insulated and the radiation heat exchange with the surroundings to be small relative to convection, determine the equilibrium temperature of the top surface of the car. The properties of air at 30°C are (Table A-15) k = 0.02588 W/m⋅°C, v = 1.608 × 10−5 m2/s, and Pr = 0.7282. The equilibrium temperature of the top surface of the car is:
The top surface of the passenger car of a train moving at a velocity of 115 km/h is 2.8 m wide and 8 m long. The top surface is absorbing solar radiation at a rate of 380 W/m2 and the temperature of the ambient air is 30°C. Assuming the roof of the car to be perfectly insulated and the radiation heat exchange with the surroundings to be small relative to convection, determine the equilibrium temperature of the top surface of the car. The properties of air at 30°C are (Table A-15) k = 0.02588 W/m⋅°C, v = 1.608 × 10−5 m2/s, and Pr = 0.7282. The equilibrium temperature of the top surface of the car is:
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
The top surface of the passenger car of a train moving at a velocity of 115 km/h is 2.8 m wide and 8 m long. The top surface is absorbing solar radiation at a rate of 380 W/m2 and the temperature of the ambient air is 30°C. Assuming the roof of the car to be perfectly insulated and the radiation heat exchange with the surroundings to be small relative to convection, determine the equilibrium temperature of the top surface of the car. The properties of air at 30°C are (Table A-15) k = 0.02588 W/m⋅°C, v = 1.608 × 10−5 m2/s, and Pr = 0.7282.
The equilibrium temperature of the top surface of the car is:
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY