The system in the figure below is in equilibrium, and its free body diagram drawn on the right. The distance, d is 1.14 m and each of the identical spring's relaxed length is l0 = 0.57 m. The mass, m of 0.86 kg brings the point P down to a height h = 15 cm. The mass of the springs are negligible. Calculate the following quantities: (a) The angle ? (b) The force exerted on P by the right spring (c) The force exerted on P by the left spring
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
The system in the figure below is in equilibrium, and its free body diagram drawn on the right. The distance, d is 1.14 m and each of the identical spring's relaxed length is l0 = 0.57 m. The mass, m of 0.86 kg brings the point P down to a height h = 15 cm. The mass of the springs are negligible. Calculate the following quantities:
(a) The angle ?
(b) The force exerted on P by the right spring
(c) The force exerted on P by the left spring
(e) The stretch length
Step by step
Solved in 3 steps with 2 images