The standard deviation alone does not measure relative variation. For example, a standard deviation of $1 would be considered large if it is describing the variability from store to store in the price of an ice cube tray. On the other hand, a standard deviation of $1 would be considered small if it is describing store-to-store variability in the price of a particular brand of freezer. A quantity designed to give a relative measure of variability is the coefficient of variation. Denoted by CV, the coefficient of variation expresses the standard deviation as a percentage of the mean. It is defined by the following formula. CV = 100(s/x) Consider two samples. Sample 1 gives the actual weight (in ounces) of the contents of cans of pet food labeled as having a net weight of 8 ounces. Sample 2 gives the actual weight (in pounds) of the contents of bags of dry pet food labeled as having a net weight of 50 pounds. The weights for the two samples are as follows. Sample 1 7.2 6.7 6.8 7.3 6.8 7.2 7.3 6.8 6.8 6.6 Sample 2 53.0 50.7 52.5 50.5 52.6 47.0 50.4 50.3 48.7 48.2   (a) For each of the given samples, calculate the mean and the standard deviation. (Round your standard deviations to four decimal places.) Sample 1 MeanStandard Deviation Sample 2 MeanStandard Deviation (b) Calculate the coefficient of variation for each sample. (Round your answers to two decimal places.) CV1CV2

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
The standard deviation alone does not measure relative variation. For example, a standard deviation of $1 would be considered large if it is describing the variability from store to store in the price of an ice cube tray. On the other hand, a standard deviation of $1 would be considered small if it is describing store-to-store variability in the price of a particular brand of freezer.
A quantity designed to give a relative measure of variability is the coefficient of variation. Denoted by CV, the coefficient of variation expresses the standard deviation as a percentage of the mean. It is defined by the following formula.
CV = 100(s/x)
Consider two samples. Sample 1 gives the actual weight (in ounces) of the contents of cans of pet food labeled as having a net weight of 8 ounces. Sample 2 gives the actual weight (in pounds) of the contents of bags of dry pet food labeled as having a net weight of 50 pounds. The weights for the two samples are as follows.
Sample 1 7.2 6.7 6.8 7.3 6.8
7.2 7.3 6.8 6.8 6.6
Sample 2 53.0 50.7 52.5 50.5 52.6
47.0 50.4 50.3 48.7 48.2
 
(a)
For each of the given samples, calculate the mean and the standard deviation. (Round your standard deviations to four decimal places.)
Sample 1
MeanStandard Deviation
Sample 2
MeanStandard Deviation
(b)
Calculate the coefficient of variation for each sample. (Round your answers to two decimal places.)
CV1CV2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman