The sliding glass door rolls on the two small lower wheels A and B. Under normal conditions the upper wheels do not touch their horizontal guide. (a) Compute the force P required to slide the door at a steady speed if wheel A becomes "frozen" and does not turn in its bearing. (b) Rework the problem if wheel B becomes frozen instead of wheel A. The coefficient of kinetic friction between a frozen wheel and the supporting surface is 0.35, and the center of mass of the 101-lb door is at its geometric center. Neglect the small diameter of the wheels.
The sliding glass door rolls on the two small lower wheels A and B. Under normal conditions the upper wheels do not touch their horizontal guide. (a) Compute the force P required to slide the door at a steady speed if wheel A becomes "frozen" and does not turn in its bearing. (b) Rework the problem if wheel B becomes frozen instead of wheel A. The coefficient of kinetic friction between a frozen wheel and the supporting surface is 0.35, and the center of mass of the 101-lb door is at its geometric center. Neglect the small diameter of the wheels.
Related questions
Question
Need help with this physics question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images