The series > Cnx" converges when x = -2 and diverges when x = 5. What can be said about the following series? n=0 00 (1) E Cn2" (II) en(-6)" n=0 n=0 (a) Both series diverge (b) Both series converge (c) I converges; II diverges (d) I cannot be determined; II diverges (e) Neither can be determined

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Explain thoroughly please

The series \(\sum_{n=0}^{\infty} c_n x^n\) converges when \(x = -2\) and diverges when \(x = 5\). What can be said about the following series?

(I) \(\sum_{n=0}^{\infty} c_n 2^n\)

(II) \(\sum_{n=0}^{\infty} c_n (-6)^n\)

Options:
(a) Both series diverge  
(b) Both series converge  
(c) I converges; II diverges  
(d) I cannot be determined; II diverges  
(e) Neither can be determined
Transcribed Image Text:The series \(\sum_{n=0}^{\infty} c_n x^n\) converges when \(x = -2\) and diverges when \(x = 5\). What can be said about the following series? (I) \(\sum_{n=0}^{\infty} c_n 2^n\) (II) \(\sum_{n=0}^{\infty} c_n (-6)^n\) Options: (a) Both series diverge (b) Both series converge (c) I converges; II diverges (d) I cannot be determined; II diverges (e) Neither can be determined
Expert Solution
Step 1

Here, we shall use the comparison test to conclude our solution.
 

The Limit Comparison Test for Series is given as

Let b(n) be a second series. Require that all a[n] and b[n] are positive.

  • If the limnanbn>0, then n=0an converges if and only if n=0bnconverges.
  • If the limnanbn=0, andn=0bn converges, thenn=0an also converges.
  • If thelimnanbn=, and n=0bn diverges, thenn=0an also diverges.
Step 2

II) We have to test the convergence of n=0cn(-6)n.

  Let n=0an = n=0cn(-6)n and n=0bn = n=0cn(-2)n, where we know thatn=0bn converges.

With an = cn(-6)n, bn=cn(-2)n, we evaluate limnanbn. Thus, 
limn anbn=limn cn(-6)ncn(-2)n             =limn (-6)n(-2)n             =limn n!.(-6)n!.(-2)     (L'Hospitals' Rule)             = 3 >0

 From Limit Comparison Test, we can see that n=0an = n=0cn(-6)n converges.

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Research Design Formulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,