The seesaw is pivoted in the middle, and the mass of the swing bar is negligible. (Figure 1) Find the angular acceleration of the seesaw. Express your answer in terms of some or all of the quantities m₁, m₂, 1, as well as the acceleration to gravity g. Submit Correct Hints My Answers Give Up Review Part Now consider a similar situation, except that now the swing bar itself has mass mbar (Figure 2) Find the angular acceleration of the seesaw. Express your answer in terms of some or all of the quantities m₁, m2, mbar, I, as well as the acceleration due to gravity g. 6g Submit Hints M -mware Give Up Review Part

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Solve all parts 

 

Torque and Angular Acceleration
Learning Goal:
To understand and apply the formula T = Ia to
rigid objects rotating about a fixed axis.
To find the acceleration a of a particle of mass m,
we use Newton's second law. Fnet =ma, where
Fet is the net force acting on the particle.
To find the angular acceleration of a rigid object
rotating about a fixed axis, we can use a similar
formula: Tet = I a, where het is the net
torque acting on the object and I is its moment of
inertia.
In this problem, you will practice applying this
formula to several situations involving angular
acceleration. In all of these situations, two objects of
masses m₁ and m₂ are attached to a seesaw. The
seesaw is made of a bar that has length I and is
pivoted so that it is free to rotate in the vertical plane
without friction.
You are to find the angular acceleration of the
seesaw when it is set in motion from the horizontal
position. In all cases, assume that m₁ > m₂, and
that counterclockwise is considered the positive
rotational direction.
Figure 1
m₁
of 3
m₂
Part A
The seesaw is pivoted in the middle, and the mass of the swing bar is negligible.
(Figure 1)
Find the angular acceleration of the seesaw.
Express your answer in terms of some or all of the quantities m₁, m₂, 17, as well as the acceleration du
to gravity g.
Submit
Correct
Now consider a similar situation, except that now the swing bar itself has mass mbar
(Figure 2)
Find the angular acceleration of the seesaw.
Express your answer in terms of some or all of the quantities m₁, m2, mbar, l, as well as the
acceleration due to gravity g.
α =
6g
Submit
Correct
Hints My Answers Give Up Review Part
Hints M
a =
art E
This time, the swing bar of mass mar is pivoted at a different point, as shown in the figure.
(Figure 3)
-Hare
Find the magnitude of the angular acceleration of the swing bar. Be sure to use the absolute value function
in your answer, since no comparison of m₁, m₂, and mbar has been made.
Give Up Review Part
Express your answer in terms of some or all of the quantities mi, m₂, mbar, !, as well as the
acceleration due to gravity g. Enter the absolute value function as abs (). For instance, enter abs(x*y) for
|zy|-
ΑΣΦ
·m
6' bar
+ 7m28-3m₁8
3¹
mbar 1 m₁14m₂1)
9 9 9
+
?
Submit Hints My Answers Give Up Review Part
Incorrect; One attempt remaining; Try Again
Transcribed Image Text:Torque and Angular Acceleration Learning Goal: To understand and apply the formula T = Ia to rigid objects rotating about a fixed axis. To find the acceleration a of a particle of mass m, we use Newton's second law. Fnet =ma, where Fet is the net force acting on the particle. To find the angular acceleration of a rigid object rotating about a fixed axis, we can use a similar formula: Tet = I a, where het is the net torque acting on the object and I is its moment of inertia. In this problem, you will practice applying this formula to several situations involving angular acceleration. In all of these situations, two objects of masses m₁ and m₂ are attached to a seesaw. The seesaw is made of a bar that has length I and is pivoted so that it is free to rotate in the vertical plane without friction. You are to find the angular acceleration of the seesaw when it is set in motion from the horizontal position. In all cases, assume that m₁ > m₂, and that counterclockwise is considered the positive rotational direction. Figure 1 m₁ of 3 m₂ Part A The seesaw is pivoted in the middle, and the mass of the swing bar is negligible. (Figure 1) Find the angular acceleration of the seesaw. Express your answer in terms of some or all of the quantities m₁, m₂, 17, as well as the acceleration du to gravity g. Submit Correct Now consider a similar situation, except that now the swing bar itself has mass mbar (Figure 2) Find the angular acceleration of the seesaw. Express your answer in terms of some or all of the quantities m₁, m2, mbar, l, as well as the acceleration due to gravity g. α = 6g Submit Correct Hints My Answers Give Up Review Part Hints M a = art E This time, the swing bar of mass mar is pivoted at a different point, as shown in the figure. (Figure 3) -Hare Find the magnitude of the angular acceleration of the swing bar. Be sure to use the absolute value function in your answer, since no comparison of m₁, m₂, and mbar has been made. Give Up Review Part Express your answer in terms of some or all of the quantities mi, m₂, mbar, !, as well as the acceleration due to gravity g. Enter the absolute value function as abs (). For instance, enter abs(x*y) for |zy|- ΑΣΦ ·m 6' bar + 7m28-3m₁8 3¹ mbar 1 m₁14m₂1) 9 9 9 + ? Submit Hints My Answers Give Up Review Part Incorrect; One attempt remaining; Try Again
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 11 images

Blurred answer
Knowledge Booster
Buckling of Columns
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY