The rotational constant for CO is 1.9314 cm−1 and 1.6116 cm−1 in the ground and first excited vibrational states, respectively. By how much does the internuclear distance change as a result of this transition?
Electronic Transitions and Spectroscopy
The term “electronic” connotes electron, and the term “transition” implies transformation. In a molecule, the electrons move from a lower to a higher energy state due to excitation. The two energy states, the ground state and the excited state are the lowest and the highest energy states, respectively. An energy change is observed with this transition, which depicts the various data related to the molecule.
Photoelectron Spectroscopy
Photoelectron spectroscopy (PES) is a part of experimental chemistry. It is a technique used in laboratories that involves projecting intense beams of radiation on a sample element. In response, the element ejects electrons for which the relative energies are measured.
The rotational constant for CO is 1.9314 cm−1 and 1.6116 cm−1 in the ground and first excited vibrational states, respectively. By how much does the internuclear distance change as a result of this transition?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps