The random variable X is the crew size of a randomly selected shuttle mission. Its probability distribution is shown below. Complete parts a through c X 4 5 6 2 P(X=x) 0.025 0.045 0.306 7 8 0 0.187 0.431 0.006 a. Find and interpret the mean of the random variable. = 5.947 (Round to three decimal places as needed.) Interpret the mean. Select the correct choice below and fill in the answer box to complete your choice. (Round to three decimal places as needed.) OA. The average number of persons in a shuttle crew is person(s). OB. The most common number of persons in a shuttle crew is person(s).
The random variable X is the crew size of a randomly selected shuttle mission. Its probability distribution is shown below. Complete parts a through c X 4 5 6 2 P(X=x) 0.025 0.045 0.306 7 8 0 0.187 0.431 0.006 a. Find and interpret the mean of the random variable. = 5.947 (Round to three decimal places as needed.) Interpret the mean. Select the correct choice below and fill in the answer box to complete your choice. (Round to three decimal places as needed.) OA. The average number of persons in a shuttle crew is person(s). OB. The most common number of persons in a shuttle crew is person(s).
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![The random variable \(X\) is the crew size of a randomly selected shuttle mission. Its probability distribution is shown below. Complete parts a through c.
| x | 2 | 4 | 5 | 6 | 7 | 8 |
|-------|-------|-------|-------|-------|-------|-------|
| P(X=x)| 0.025 | 0.045 | 0.306 | 0.187 | 0.431 | 0.006 |
**a. Find and interpret the mean of the random variable.**
\[
\mu = 5.947 \quad \text{(Round to three decimal places as needed.)}
\]
**Interpret the mean. Select the correct choice below and fill in the answer box to complete your choice.**
(Round to three decimal places as needed.)
- [ ] A. The average number of persons in a shuttle crew is \(\boxed{5.947}\) person(s).
- [ ] B. The most common number of persons in a shuttle crew is \(\boxed{5.947}\) person(s).
**Explanation:**
The column labeled \( x \) represents the possible crew sizes, while the column labeled \( P(X=x) \) represents their respective probabilities. To calculate the mean \(\mu\) of the random variable X, we sum the products of each value of \( x \) and its corresponding probability (\( P(X=x) \)):
\[
\mu = \sum (x \times P(X=x)) = (2 \times 0.025) + (4 \times 0.045) + (5 \times 0.306) + (6 \times 0.187) + (7 \times 0.431) + (8 \times 0.006)
\]
\[
\mu = 0.05 + 0.18 + 1.53 + 1.122 + 3.017 + 0.048 = 5.947
\]
To interpret the mean:
- **Option A** (correct): The mean represents the average number of persons in the shuttle crew, 5.947.
- **Option B**: This option refers to the mode, which is the most frequently occurring value. It does not represent the mean.
Note: There are no graphs or diagrams to explain in this image.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F02ebb731-29eb-4cd6-ba2a-cc2ff28bf3c8%2F09bdb69f-f03f-4c69-9306-243bcf0e2931%2F5wpbxyn_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The random variable \(X\) is the crew size of a randomly selected shuttle mission. Its probability distribution is shown below. Complete parts a through c.
| x | 2 | 4 | 5 | 6 | 7 | 8 |
|-------|-------|-------|-------|-------|-------|-------|
| P(X=x)| 0.025 | 0.045 | 0.306 | 0.187 | 0.431 | 0.006 |
**a. Find and interpret the mean of the random variable.**
\[
\mu = 5.947 \quad \text{(Round to three decimal places as needed.)}
\]
**Interpret the mean. Select the correct choice below and fill in the answer box to complete your choice.**
(Round to three decimal places as needed.)
- [ ] A. The average number of persons in a shuttle crew is \(\boxed{5.947}\) person(s).
- [ ] B. The most common number of persons in a shuttle crew is \(\boxed{5.947}\) person(s).
**Explanation:**
The column labeled \( x \) represents the possible crew sizes, while the column labeled \( P(X=x) \) represents their respective probabilities. To calculate the mean \(\mu\) of the random variable X, we sum the products of each value of \( x \) and its corresponding probability (\( P(X=x) \)):
\[
\mu = \sum (x \times P(X=x)) = (2 \times 0.025) + (4 \times 0.045) + (5 \times 0.306) + (6 \times 0.187) + (7 \times 0.431) + (8 \times 0.006)
\]
\[
\mu = 0.05 + 0.18 + 1.53 + 1.122 + 3.017 + 0.048 = 5.947
\]
To interpret the mean:
- **Option A** (correct): The mean represents the average number of persons in the shuttle crew, 5.947.
- **Option B**: This option refers to the mode, which is the most frequently occurring value. It does not represent the mean.
Note: There are no graphs or diagrams to explain in this image.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON

The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman