The proportion of adults living in a small town who are college graduates is estimated to be p = 0.3. To test this hypothesis, a random sample of 200 adults is selected. If the number of college graduates in the sample is anywhere in the fail-to-reject region defined to be 52≤x≤68, where x is the number of college graduates in our sample, we shall not reject the null hypothesis that p = 0.3; otherwise, we shall conclude that p# 0.3. Complete parts (a) through (c) below. Use the normal approximation. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. (a) Evaluate a assuming that p = 0.3. α= (Round to four decimal places as needed.)
The proportion of adults living in a small town who are college graduates is estimated to be p = 0.3. To test this hypothesis, a random sample of 200 adults is selected. If the number of college graduates in the sample is anywhere in the fail-to-reject region defined to be 52≤x≤68, where x is the number of college graduates in our sample, we shall not reject the null hypothesis that p = 0.3; otherwise, we shall conclude that p# 0.3. Complete parts (a) through (c) below. Use the normal approximation. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. (a) Evaluate a assuming that p = 0.3. α= (Round to four decimal places as needed.)
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
![Areas under the Normal Curve
Areas under the Normal Curve
z
.00
.01
-3.4
0.0003 0.0003 0.0003 0.0003
-3.3 0.0005 0.0005 0.0005 0.0004
-3.2 0.0007 0.0007 0.0006 0.0006
-3.1 0.0010 0.0009 0.0009 0.0009
-3.0 0.0013 0.0013 0.0013 0.0012
-2.9 0.0019 0.0018 0.0018 0.0017
-2.8 0.0026 0.0025 0.0024 0.0023
-2.7 0.0035 0.0034 0.0033 0.0032
-2.6 0.0047 0.0045 0.0044 0.0043
-2.5 0.0062 0.0060 0.0059 0.0057
-2.4 0.0082 0.0080 0.0078 0.0075
-2.3 0.0107 0.0104 0.0102 0.0099
.02
.03
.05
.04
.06
.07
0.0003 0.0003
0.0003 0.0003
0.0004 0.0004 0.0004 0.0004
0.0006 0.0006 0.0006 0.0005
0.0008 0.0008 0.0008 0.0008
0.0012 0.0011 0.0011 0.0011
0.0016 0.0016 0.0015 0.0015
0.0023 0.0022 0.0021 0.0021
0.0031 0.0030 0.0029 0.0028
.08
.09
0.0003 0.0002 -3.4
0.0004 0.0003 -3.3
0.0005 0.0005 -3.2
z
Z
.00
.01
.02
.03
.04
.05
.06
.07
0.0007 0.0007 -3.1
0.0010 0.0010 -3.0
0.3
0.4
-0.3 0.3821 0.3783 0.3745
2
.00
.01
0.0041 0.0040 0.0039 0.0038
0.0055 0.0054 0.0052 0.0051
0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4
0.0096 0.0094 0.0091 0.0089 0.0087
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 -1.9
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 -1.8
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 -1.7
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.6
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 -1.4
-1.3
0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 -1.2
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 -1.1
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 -1.0
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 -0.9
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 -0.8
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 -0.7
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192
0.3707 0.3669 0.3632 0.3594 0.3557
0.3483 -0.3
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.2
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 -0.1
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 -0.0
.02
.03
.04
.05
.06
.07
.08
.09
Z
0.0014 0.0014 -2.9
0.0020 0.0019 -2.8
0.0027 0.0026 2.7
0.0037 0.0036 -2.6
0.0049 0.0048 -2.5
0.5
0.0084 -2.3
0.0110 -2.2
0.0143 -2.1
2.7
0.2483 0.2451 -0.6
0.2810
0.2776 -0.5
0.3156
0.3520
0.3121 -0.4
¡A
2
.00
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.2
0.6179 0.6217 0.6255
0.6293 0.6331
0.6368 0.6406 0.6443 0.6480 0.6517 0.3
0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4
0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.5
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.6
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.0
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.1
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.2
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.3
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.4
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.5
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.7
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.8
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1.9
2.0 0.9772 0.9778 0.9783 0.9788 0,9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.0
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878
0.9881 0.9884 0.9887 0.9890 2.2
2.3
0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.3
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.4
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.5
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.6
0.9965 0.9966 0.9967
0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.7
2.8
0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.8
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 2.9
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992
0.9992 0.9992 0.9993 0.9993 3.1
3.2 0.9993
0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.2
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.3
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.4
.01
.02
.03
.04
.05
.06
.07
.08
.09
.08
.09
0.5319 0.5359 0.0
2
Z](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8ab9af8c-03e5-4dee-8026-8781163ed16c%2F4e359f47-2584-40fc-a194-06b9dae736d2%2Felrrp6_processed.png&w=3840&q=75)
Transcribed Image Text:Areas under the Normal Curve
Areas under the Normal Curve
z
.00
.01
-3.4
0.0003 0.0003 0.0003 0.0003
-3.3 0.0005 0.0005 0.0005 0.0004
-3.2 0.0007 0.0007 0.0006 0.0006
-3.1 0.0010 0.0009 0.0009 0.0009
-3.0 0.0013 0.0013 0.0013 0.0012
-2.9 0.0019 0.0018 0.0018 0.0017
-2.8 0.0026 0.0025 0.0024 0.0023
-2.7 0.0035 0.0034 0.0033 0.0032
-2.6 0.0047 0.0045 0.0044 0.0043
-2.5 0.0062 0.0060 0.0059 0.0057
-2.4 0.0082 0.0080 0.0078 0.0075
-2.3 0.0107 0.0104 0.0102 0.0099
.02
.03
.05
.04
.06
.07
0.0003 0.0003
0.0003 0.0003
0.0004 0.0004 0.0004 0.0004
0.0006 0.0006 0.0006 0.0005
0.0008 0.0008 0.0008 0.0008
0.0012 0.0011 0.0011 0.0011
0.0016 0.0016 0.0015 0.0015
0.0023 0.0022 0.0021 0.0021
0.0031 0.0030 0.0029 0.0028
.08
.09
0.0003 0.0002 -3.4
0.0004 0.0003 -3.3
0.0005 0.0005 -3.2
z
Z
.00
.01
.02
.03
.04
.05
.06
.07
0.0007 0.0007 -3.1
0.0010 0.0010 -3.0
0.3
0.4
-0.3 0.3821 0.3783 0.3745
2
.00
.01
0.0041 0.0040 0.0039 0.0038
0.0055 0.0054 0.0052 0.0051
0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4
0.0096 0.0094 0.0091 0.0089 0.0087
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 -1.9
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 -1.8
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 -1.7
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.6
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 -1.4
-1.3
0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 -1.2
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 -1.1
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 -1.0
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 -0.9
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 -0.8
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 -0.7
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192
0.3707 0.3669 0.3632 0.3594 0.3557
0.3483 -0.3
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.2
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 -0.1
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 -0.0
.02
.03
.04
.05
.06
.07
.08
.09
Z
0.0014 0.0014 -2.9
0.0020 0.0019 -2.8
0.0027 0.0026 2.7
0.0037 0.0036 -2.6
0.0049 0.0048 -2.5
0.5
0.0084 -2.3
0.0110 -2.2
0.0143 -2.1
2.7
0.2483 0.2451 -0.6
0.2810
0.2776 -0.5
0.3156
0.3520
0.3121 -0.4
¡A
2
.00
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.2
0.6179 0.6217 0.6255
0.6293 0.6331
0.6368 0.6406 0.6443 0.6480 0.6517 0.3
0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4
0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.5
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.6
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.0
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.1
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.2
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.3
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.4
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.5
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.7
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.8
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1.9
2.0 0.9772 0.9778 0.9783 0.9788 0,9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.0
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878
0.9881 0.9884 0.9887 0.9890 2.2
2.3
0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.3
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.4
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.5
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.6
0.9965 0.9966 0.9967
0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.7
2.8
0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.8
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 2.9
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992
0.9992 0.9992 0.9993 0.9993 3.1
3.2 0.9993
0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.2
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.3
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.4
.01
.02
.03
.04
.05
.06
.07
.08
.09
.08
.09
0.5319 0.5359 0.0
2
Z
![The proportion of adults living in a small town who are college graduates is estimated to be p = 0.3. To test
this hypothesis, a random sample of 200 adults is selected. If the number of college graduates in the sample is
anywhere in the fail-to-reject region defined to be 52 ≤x≤68, where x is the number of college graduates in
our sample, we shall not reject the null hypothesis that p = 0.3; otherwise, we shall conclude that p# 0.3. Complete
parts (a) through (c) below. Use the normal approximation.
Click here to view page 1 of the standard normal distribution table.
Click here to view page 2 of the standard normal distribution table.
(a) Evaluate a assuming that p = 0.3.
απ
(Round to four decimal places as needed.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8ab9af8c-03e5-4dee-8026-8781163ed16c%2F4e359f47-2584-40fc-a194-06b9dae736d2%2F6zjq7jo_processed.png&w=3840&q=75)
Transcribed Image Text:The proportion of adults living in a small town who are college graduates is estimated to be p = 0.3. To test
this hypothesis, a random sample of 200 adults is selected. If the number of college graduates in the sample is
anywhere in the fail-to-reject region defined to be 52 ≤x≤68, where x is the number of college graduates in
our sample, we shall not reject the null hypothesis that p = 0.3; otherwise, we shall conclude that p# 0.3. Complete
parts (a) through (c) below. Use the normal approximation.
Click here to view page 1 of the standard normal distribution table.
Click here to view page 2 of the standard normal distribution table.
(a) Evaluate a assuming that p = 0.3.
απ
(Round to four decimal places as needed.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 9 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)