The production capacity for acrylonitrile (C3H3N) in the United States is over 2 billion pounds per year. Acrylonitrile, the building block for polyacrylonitrile fibers and a variety of plastics, is produced from gaseous propylene, ammonia, and oxygen: 2C3H6(g) + 2NH3(g) + 302(g) → 2C3H3N(g) + 6H₂O(g) Assuming 100% yield, determine the mass of acrylonitrile which can be produced from the mixture below: Mass 7.28x102 g 5.00 x 102 g 1.00 x 103 g oxygen progress Reactant propylene ammonia Submit g= mass of acrylonitrile produced What mass of water is formed from your mixture? mass of water formed = Calculate the mass (in grams) each react Reactant Mass remaining propylene ammonia oxygen Show Hints g 9 g g after the reaction is complete: Previous

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
icon
Concept explainers
Question
Ery 1
3
M
(M)
2req
The production capacity for acrylonitrile (C3H3N) in the United States is over 2 billion pounds per year. Acrylonitrile, the
building block for polyacrylonitrile fibers and a variety of plastics, is produced from gaseous propylene, ammonia, and oxygen:
2C3H6(g) + 2NH3(g) + 30₂(g) → 2C3H3N(g) + 6H₂O(g)
Assuming 100% yield, determine the mass of acrylonitrile which can be produced from the mixture below:
Mass
7.28x102 g
5.00 x 102 g
1.00 x 103 g
In progress
Reactant
oxygen
propylene
ammonia
oxygen
What mass of water is formed from your mixture?
mass of water formed =
g
Calculate the mass (in grams) of each reactant after the reaction is complete:
Submit
g = mass of acrylonitrile produced
Reactant Mass remaining
propylene
ammonia
Show Hints
ס ס ס
g
g
Cengage Learning Cengage Technical Support
Previous
Next
Save and Exit
Transcribed Image Text:Ery 1 3 M (M) 2req The production capacity for acrylonitrile (C3H3N) in the United States is over 2 billion pounds per year. Acrylonitrile, the building block for polyacrylonitrile fibers and a variety of plastics, is produced from gaseous propylene, ammonia, and oxygen: 2C3H6(g) + 2NH3(g) + 30₂(g) → 2C3H3N(g) + 6H₂O(g) Assuming 100% yield, determine the mass of acrylonitrile which can be produced from the mixture below: Mass 7.28x102 g 5.00 x 102 g 1.00 x 103 g In progress Reactant oxygen propylene ammonia oxygen What mass of water is formed from your mixture? mass of water formed = g Calculate the mass (in grams) of each reactant after the reaction is complete: Submit g = mass of acrylonitrile produced Reactant Mass remaining propylene ammonia Show Hints ס ס ס g g Cengage Learning Cengage Technical Support Previous Next Save and Exit
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps

Blurred answer
Knowledge Booster
Thermochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY