The probability that a person has a certain disease is 0.05. Medical diagnostic tests are available to determine whether the person actually has the disease. If the disease is actually present, the probability that the medical diagnostic test will give a positive result (indicating that the disease is present) is 0.88. If the disease is not actually present, the probability of a positive test result (indicating that the disease is present) is 0.03. a. If the medical diagnostic test has given a positive result (indicating that the disease is present), what is the probability that the disease is actually present? b. If the medical diagnostic test has given a negative result (indicating that the disease is not present), what is the probability that the disease is not present? a. The probability is 607) (Round to three decimal places as needed.) b. The probability is (Round to three decimal places as needed.) GD

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
The probability that a person has a certain disease is 0.05. Medical diagnostic tests are available to determine whether the person actually has the disease. If the disease is actually present, the
probability that the medical diagnostic test will give a positive result (indicating that the disease is present) is 0.88. If the disease is not actually present, the probability of a positive test result
(indicating that the disease is present) is 0.03.
a. If the medical diagnostic test has given a positive result (indicating that the disease is present), what is the probability that the disease is actually present?
b. If the medical diagnostic test has given a negative result (indicating that the disease is not present), what is the probability that the disease is not present?
a. The probability is 607) (Round to three decimal places as needed.)
b. The probability is
(Round to three decimal places as needed.)
GID
Transcribed Image Text:The probability that a person has a certain disease is 0.05. Medical diagnostic tests are available to determine whether the person actually has the disease. If the disease is actually present, the probability that the medical diagnostic test will give a positive result (indicating that the disease is present) is 0.88. If the disease is not actually present, the probability of a positive test result (indicating that the disease is present) is 0.03. a. If the medical diagnostic test has given a positive result (indicating that the disease is present), what is the probability that the disease is actually present? b. If the medical diagnostic test has given a negative result (indicating that the disease is not present), what is the probability that the disease is not present? a. The probability is 607) (Round to three decimal places as needed.) b. The probability is (Round to three decimal places as needed.) GID
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,