The potential energy of one of the atoms in the hydrogen molecule is given by U(x) = U₁ (e-2(1-10)/b - 2e-(1-10)/b) where U₁ = 2.36 [eV], zo = 0.037 [nm], and b = 0.034 [nm]. Note that 1 [eV] = 1.6 × 10-¹⁹ [J]. Part (a) Find the energy of the hydrogen molecule in ground state. Part (b) If the measured energy of each atom in the hydrogen molecule is E= -1.15 [eV], where are the classical turning points of the atomic vibration in the hydrogen molecule?
The potential energy of one of the atoms in the hydrogen molecule is given by U(x) = U₁ (e-2(1-10)/b - 2e-(1-10)/b) where U₁ = 2.36 [eV], zo = 0.037 [nm], and b = 0.034 [nm]. Note that 1 [eV] = 1.6 × 10-¹⁹ [J]. Part (a) Find the energy of the hydrogen molecule in ground state. Part (b) If the measured energy of each atom in the hydrogen molecule is E= -1.15 [eV], where are the classical turning points of the atomic vibration in the hydrogen molecule?
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images