The population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual For a sample of n= 66, find the probability of a sample mean being less than 242 if p= 24 and e= 1.35 . Standard normal table (page 1) Standard normal table (page 2) H . E Click the icon to view page 1 of the standard normal table. E Click the icon to view page 2 of the standard normal table. For a sample of n= 66, the probability of a sample mean being less than 242fu= 24 and e=1.35 isO Round to four decimal places as needed) .09 07 .06 05 04 03 02 01 00 0003 0004 0003 -14 -13 0002 0003 0004 0004 0005 0003 0003 0003 0004 .0006 0008 0003 0004 0006 0003 0004 0003 0003 000s 000s 0007 0005 Would the given sample mean be considered unusual? -3.2 -3.1 0005 0005 0007 0008 p006 0006 0006 0009 9 0009 0007 0009 0007 0008 0008 0010 The sample mean be considered unusual because it has a probability that is than 5%. -3.0 0010 0010 .0011 0015 0021 0011 0011 0012 0012 0017 0013 0013 0013 0001 02 0.0 5000 5040 So80 S120 01 5398 548 S478 04 OS .06 os 07 08 09 -2.9 0014 0014 0015 0021 0016 0022 0016 0023 5319 0018 0018 0019 S160 S199 5239 5279 5596 5987 -28 0019 0020 0023 0024 0025 0026 0.1 5517 5557 5675 5714 5753 -2.7 0026 0027 0028 0037 003 0029 0030 0031 0032 0033 0034 0035 0045 0047 5948 6026 6406 02 5793 6179 5832 6217 5871 5910 6064 6103 6141 6517 6879 -2.6 .0036 .0039 0040 0041 0043 0044 6255 6293 6331 6700 7054 J068 7123 7157 7190 03 6480 6368 673% 6443 0048 .0049 .0066 0087 0113 0116 0119 -2.5 0051 0052 0069 0054 00ss 0057 0059 0078 0099 0102 0104 0132 0060 0062 0.4 6554 6591 6628 664 6772 6808 6844 0068 -24 -23 .0064 0084 0110 0071 00e9 0091 0094 0096 0122 0073 0075 0080 0082 0107 0139 0.5 6915 6950 7019 7224 7257 291 7324 7357 7389 7422 7454 7486 7517 7549 -22 0125 0129 0136 0.7 7580 7611 7642 7673 7704 734 764 794 7823 7852 -2.1 0143 014 6 0150 o154 0158 0162 0166 0170 0174 0179 7881 7910 7939 7967 7995 8023 8078 8106 8264 829 8315 8340 865 8599 8749 8770 8790 8810 8051 8133 -2.0 0183 0233 0188 0239 0192 0244 0307 0197 0250 0202 0256 0207 0262 0212 0268 0217 0274 0222 0281 0228 0287 0.9 3159 8186 8212 8238 - 1.9 1.0 8413 8438 8461 8485 8508 8531 8554 857 8621 8830 9015 -18 0294 0367 0301 0375 0384 0314 0392 0322 0401 0495 0329 0336 0344 0351 0418 0427 0446 0359 8643 66S 686 8708 8729 8925 9099 9251 1.1 -1.7 0409 0436 1.2 8849 8869 8888 8907 8944 8962 8980 8997 046S 0475 0582 - 1.6 0455 Oses 0485 0594 0721 0516 0526 0537 1.3 9032 9049 9082 9115 9265 9131 9147 9162 9177 -1.5 0559 0571 0694 0838 0606 0735 0618 0749 0630 0764 0643 0655 0793 0951 0668 0808 1.4 9192 9207 9222 9236 9279 9292 9306 9319 0708 0853 9 088s 0901 0918 0934 1 098 - 14 0681 0778 1.5 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441 - 1.3 0823 0985 1003 1020 1038 1056 1075 1093 1112 - 1.1 16 9505 9452 9463 9554 9564 9573 41 49 656 9474 944 9495 9515 9525 535 9545 - 1.2 J151 1131 1335 1.7 9582 9591 9599 960e 9616 9625 63 1170 1190 1210 1230 1251 1271 1292 1314 1357 1469 1492 1515 1.8 9649 9664 9671 9678 9686 9693 970 -1.0 1379 .1401 .1423 .1446 1539 1562 1587 1.9 9713 9719 9726 9744 9750 9756 9761 9738 9772 9778 9783 9788 9793 9798 9803 9808 9812 9732 9767 9817 -0.9 .1660 1611 1867 1635 1685 1711 .1977 1736 1762 1788 1814 1841 2.0 -08 1894 2005 .1922 2177 2206 .1949 2033 2327 2358 2061 2090 2119 2420 9821 9826 830 9834 938 42 04 9661 9864 9868 9671 9875 2.1 9646 9850 854 9857 -0.7 2148 2236 2266 2296 2389 9878 9681 9884 9887 22 -0.6 2451 2483 2546 2514 2843 2578 2611 2946 3300 2643 2981 2676 3015 2709 3050 2743 2.3 906 9893 9918 9901 9925 9904 9909 9911 9932 9913 -0.5 2776 2810 2877 3085 2912 3264 24 9920 9922 9927 9929 9931 9934 9936 -04 3121 3156 3192 3228 3372 3409 3446 2.5 9938 9940 941 9943 9945 9946 9948 9949 9951 9952 -0.3 3783 3483 3859 3520 3897 3557 3594 3632 3669 3707 3974 A013 3745 4129 3821 A207 2.6 9953 9965 9955 9966 9956 9967 9976 9957 9959 9969 9960 9961 9970 9971 9962 9972 9963 9973 9964 9974 -0.2 3936 A052 4090 A168 27 9968 -0.1 -0.0 A247 A41 A26 A325 A364 4404 4443 4840 06 05 04 4483 490 A522 4920 A562 A960 A602 5000 28 9974 9975 9977 9977 9978 9979 9979 9985 9985 A81 A721 4761 9981 9984 9982 9987 9984 09 07 03 02 01 00 1.0 9987 9987 998 998 999 9909 99 9990 99 99O000

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
The population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual.
For a sample of n = 66, find the probability of a sample mean being less than 24.2 if u = 24 and o = 1.35.
Standard normal table (page 1)
Standard normal table (page 2)
E Click the icon to view page 1 of the standard normal table.
E Click the icon to view page 2 of the standard normal table.
For a sample of n = 66, the probability of a sample mean being less than 24.2 if u = 24 ando = 1.35 is
.09
.08
.07
.06
.05
.04
.03
.02
.01
.00
Area
(Round to four decimal places as needed.)
- 3.4
- 3.3
- 3.2
- 3.1
- 3.0
- 2.9
- 2.8
.0002
.0003
.0003
.0003
.0003
0003
.0003
.0003
.0003
.0003
.0003
.0004
.0004
.0004
.0004
0004
.0004
.0005
.0005
.0005
Would the given sample mean be considered unusual?
.0005
.0005
.0005
.0006
.0006
0006
.0006
.0006
.0007
.0007
.0007
.0007
.0008
.0008
.0008
0008
.0009
.0009
.0009
0010
The sample mean
V be considered unusual because it has a probability that is
than 5%.
.0010
.0010
.0011
.0011
.0011
0012
.0012
.0013
.0013
0013
.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
.0019
0026
.0016
.0018
.0024
.0033
.0018
0025
.0014
.0014
.0015
.0015
0016
.0017
0.0
.5000
.5040
.5080
.5120
.5160
.5199
.5239
.5279
.5319
.5359
.0019
.0020
.0021
.0021
0022
0023
.0023
0.1
.5398
.5438
.5478
.5517
.5557
.5596
.5636
5675
.5714
.5753
-2.7
.0026
.0027
.0028
.0029
.0030
0031
.0032
.0034
0035
0.2
.5793
5832
5871
.5910
5948
5987
.6026
.6064
.6103
.6141
- 2.6
- 2.5
- 2.4
- 2.3
- 2.2
- 2.1
- 2.0
- 1.9
.0036
.0037
.0038
.0039
.0040
0041
.0043
.0044
.0045
0047
6331
6700
.6368
.6736
0.3
.6179
.6217
.6255
.6293
.6406
.6443
.6480
6517
.0048
.0049
.0051
.0052
.0054
0055
.0057
.0059
.0060
.0062
0.4
.6554
.6591
.6628
.6664
.6772
.6808
.6844
.6879
0082
0107
0139
0179
0228
.0064
.0066
.0068
.0069
0071
0073
.0075
.0078
.0080
0.5
.6915
.6950
.6985
.7019
.7054
.7088
7123
.7157
.7190
7224
.0087
.0113
.0084
.0089
.0091
.0094
0096
.0099
.0102
.0104
0.6
.7257
.7291
.7324
.7357
.7389
.7422
7454
.7486
.7517
7549
.0110
.0116
.0119
.0122
0125
.0129
.0132
.0136
0.7
.7580
7611
.7642
7673
.7704
.7734
7764
.7794
.7823
7852
.0150
.0192
.0174
.0222
.0143
.0146
.0154
.0158
0162
.0166
.0170
0.8
.7881
.7910
.7939
7967
7995
.8023
8051
.8078
.8106
.8133
.0183
.0188
.0197
.0202
0207
.0212
0217
0.9
.8159
8186
.8212
.8238
.8264
.8289
.8315
.8340
.8365
8389
.0233
.0239
.0244
.0250
.0256
0262
.0268
.0274
.0281
.0287
1.0
8413
8438
.8461
.8485
8508
.8531
.8554
8577
.8599
8621
- 1.8
- 1.7
- 1.6
- 1.5
- 1.4
- 1.3
- 1.2
- 1.1
- 1.0
.0294
.0301
.0307
.0314
.0322
0329
.0336
.0344
.0351
.0359
.8665
8869
1.1
.8643
8686
8708
.8729
.8749
.8770
.8790
.8810
8830
.0367
.0375
.0384
0392
.0401
0409
.0418
.0427
0436
.0446
1.2
.8849
.8888
.8907
.8925
.8944
.8962
.8980
.8997
.9015
.0455
.0465
.0475
.0485
.0495
0505
.0516
.0526
.0537
.0548
1.3
.9032
.9049
.9066
.9082
.9099
.9115
.9131
.9147
9162
.9177
.0559
.0571
0582
.0594
.0606
0618
.0630
.0643
.0655
0668
1.4
.9192
.9207
.9222
.9236
.9251
.9265
.9279
.9292
.9306
.9319
.0681
.0694
.0708
.0721
.0735
0749
.0764
.0778
.0793
.0808
1.5
9332
.9345
.9357
.9370
.9382
9394
.9406
.9418
.9429
.9441
.0823
.0838
.0853
.0869
.0885
0901
.0918
.0934
.0951
.0968
1.6
.9452
.9463
9474
.9484
.9495
.9505
.9515
.9525
.9535
.9545
.1151
.1357
.1587
.0985
.1003
.1020
.1038
.1056
.1075
.1093
.1112
.1131
1.7
.9554
.9564
.9573
.9582
.9591
.9599
.9608
.9616
.9625
.9633
.1170
.1190
.1210
.1230
.1251
.1271
.1292
.1314
.1335
1.8
.9641
.9649
9656
.9664
.9671
.9678
.9686
.9693
.9699
.9706
.1539
.1788
-1.0
.1379
.1401
.1423
.1446
.1469
.1492
.1515
.1562
1.9
.9713
.9719
9726
.9732
.9738
.9744
.9750
.9756
.9761
.9767
-0.9
.1611
.1635
.1660
.1685
.1711
.1736
.1762
.1814
.1841
.9788
9793
2.0
.9772
.9778
.9783
.9798
.9803
.9808
.9812
.9817
-0.8
.1867
.1894
.1922
.1949
.1977
2005
.2033
2061
.2090
2119
2.1
.9821
.9826
.9830
.9834
9838
.9842
.9846
9850
.9854
.9857
-0.7
.2148
2177
.2206
.2236
2266
2296
.2327
2358
.2389
2420
2.2
.9861
.9864
.9868
.9871
9875
.9878
.9881
.9884
.9887
.9890
-0.6
.2451
.2483
2514
.2546
2578
2611
.2643
.2676
.2709
2743
2.3
.9893
9896
.9898
.9901
.9904
.9906
.9909
.9911
.9913
.9916
3085
3446
3821
4207
-0.5
.2776
.2810
2843
.2877
2912
2946
.2981
3015
.3050
2.4
.9918
9920
.9922
.9925
.9927
.9929
.9931
.9932
.9934
9936
-0.4
.3121
.3156
3192
.3228
3264
3300
.3336
.3372
.3409
2.5
.9938
.9940
.9941
.9943
9945
.9946
.9948
.9949
.9951
.9952
-0.3
.3483
3520
.3557
.3594
3632
3669
.3707
3745
3783
2.6
9953
9955
.9956
9957
.9959
.9960
.9961
.9962
.9963
.9964
-0.2
.3859
.3897
.3936
.3974
4013
4052
4090
4129
4168
2.7
.9965
.9966
.9967
9968
.9969
.9970
.9971
.9972
.9973
.9974
-0.1
4247
4286
.4325
.4364
4404
4443
.4483
4522
4562
4602
2.8
.9974
.9975
.9976
9977
.9977
.9978
.9979
.9979
.9980
.9981
- 0.0
4641
4681
.4721
.4761
.4801
4840
.4880
4920
4960
5000
2.9
.9981
.9982
.9982
.9983
.9984
.9984
.9985
.9985
.9986
.9986
.09
.08
.07
.06
.05
.04
.03
.02
.01
.00
3.0
.9987
.9987
.9987
9988
.9988
.9989
9989
.9989
.9990 .9990
Transcribed Image Text:The population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual. For a sample of n = 66, find the probability of a sample mean being less than 24.2 if u = 24 and o = 1.35. Standard normal table (page 1) Standard normal table (page 2) E Click the icon to view page 1 of the standard normal table. E Click the icon to view page 2 of the standard normal table. For a sample of n = 66, the probability of a sample mean being less than 24.2 if u = 24 ando = 1.35 is .09 .08 .07 .06 .05 .04 .03 .02 .01 .00 Area (Round to four decimal places as needed.) - 3.4 - 3.3 - 3.2 - 3.1 - 3.0 - 2.9 - 2.8 .0002 .0003 .0003 .0003 .0003 0003 .0003 .0003 .0003 .0003 .0003 .0004 .0004 .0004 .0004 0004 .0004 .0005 .0005 .0005 Would the given sample mean be considered unusual? .0005 .0005 .0005 .0006 .0006 0006 .0006 .0006 .0007 .0007 .0007 .0007 .0008 .0008 .0008 0008 .0009 .0009 .0009 0010 The sample mean V be considered unusual because it has a probability that is than 5%. .0010 .0010 .0011 .0011 .0011 0012 .0012 .0013 .0013 0013 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .0019 0026 .0016 .0018 .0024 .0033 .0018 0025 .0014 .0014 .0015 .0015 0016 .0017 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 .0019 .0020 .0021 .0021 0022 0023 .0023 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 5675 .5714 .5753 -2.7 .0026 .0027 .0028 .0029 .0030 0031 .0032 .0034 0035 0.2 .5793 5832 5871 .5910 5948 5987 .6026 .6064 .6103 .6141 - 2.6 - 2.5 - 2.4 - 2.3 - 2.2 - 2.1 - 2.0 - 1.9 .0036 .0037 .0038 .0039 .0040 0041 .0043 .0044 .0045 0047 6331 6700 .6368 .6736 0.3 .6179 .6217 .6255 .6293 .6406 .6443 .6480 6517 .0048 .0049 .0051 .0052 .0054 0055 .0057 .0059 .0060 .0062 0.4 .6554 .6591 .6628 .6664 .6772 .6808 .6844 .6879 0082 0107 0139 0179 0228 .0064 .0066 .0068 .0069 0071 0073 .0075 .0078 .0080 0.5 .6915 .6950 .6985 .7019 .7054 .7088 7123 .7157 .7190 7224 .0087 .0113 .0084 .0089 .0091 .0094 0096 .0099 .0102 .0104 0.6 .7257 .7291 .7324 .7357 .7389 .7422 7454 .7486 .7517 7549 .0110 .0116 .0119 .0122 0125 .0129 .0132 .0136 0.7 .7580 7611 .7642 7673 .7704 .7734 7764 .7794 .7823 7852 .0150 .0192 .0174 .0222 .0143 .0146 .0154 .0158 0162 .0166 .0170 0.8 .7881 .7910 .7939 7967 7995 .8023 8051 .8078 .8106 .8133 .0183 .0188 .0197 .0202 0207 .0212 0217 0.9 .8159 8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 8389 .0233 .0239 .0244 .0250 .0256 0262 .0268 .0274 .0281 .0287 1.0 8413 8438 .8461 .8485 8508 .8531 .8554 8577 .8599 8621 - 1.8 - 1.7 - 1.6 - 1.5 - 1.4 - 1.3 - 1.2 - 1.1 - 1.0 .0294 .0301 .0307 .0314 .0322 0329 .0336 .0344 .0351 .0359 .8665 8869 1.1 .8643 8686 8708 .8729 .8749 .8770 .8790 .8810 8830 .0367 .0375 .0384 0392 .0401 0409 .0418 .0427 0436 .0446 1.2 .8849 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 .0455 .0465 .0475 .0485 .0495 0505 .0516 .0526 .0537 .0548 1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 9162 .9177 .0559 .0571 0582 .0594 .0606 0618 .0630 .0643 .0655 0668 1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 .0681 .0694 .0708 .0721 .0735 0749 .0764 .0778 .0793 .0808 1.5 9332 .9345 .9357 .9370 .9382 9394 .9406 .9418 .9429 .9441 .0823 .0838 .0853 .0869 .0885 0901 .0918 .0934 .0951 .0968 1.6 .9452 .9463 9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 .1151 .1357 .1587 .0985 .1003 .1020 .1038 .1056 .1075 .1093 .1112 .1131 1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 .1170 .1190 .1210 .1230 .1251 .1271 .1292 .1314 .1335 1.8 .9641 .9649 9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 .1539 .1788 -1.0 .1379 .1401 .1423 .1446 .1469 .1492 .1515 .1562 1.9 .9713 .9719 9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 -0.9 .1611 .1635 .1660 .1685 .1711 .1736 .1762 .1814 .1841 .9788 9793 2.0 .9772 .9778 .9783 .9798 .9803 .9808 .9812 .9817 -0.8 .1867 .1894 .1922 .1949 .1977 2005 .2033 2061 .2090 2119 2.1 .9821 .9826 .9830 .9834 9838 .9842 .9846 9850 .9854 .9857 -0.7 .2148 2177 .2206 .2236 2266 2296 .2327 2358 .2389 2420 2.2 .9861 .9864 .9868 .9871 9875 .9878 .9881 .9884 .9887 .9890 -0.6 .2451 .2483 2514 .2546 2578 2611 .2643 .2676 .2709 2743 2.3 .9893 9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 3085 3446 3821 4207 -0.5 .2776 .2810 2843 .2877 2912 2946 .2981 3015 .3050 2.4 .9918 9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 9936 -0.4 .3121 .3156 3192 .3228 3264 3300 .3336 .3372 .3409 2.5 .9938 .9940 .9941 .9943 9945 .9946 .9948 .9949 .9951 .9952 -0.3 .3483 3520 .3557 .3594 3632 3669 .3707 3745 3783 2.6 9953 9955 .9956 9957 .9959 .9960 .9961 .9962 .9963 .9964 -0.2 .3859 .3897 .3936 .3974 4013 4052 4090 4129 4168 2.7 .9965 .9966 .9967 9968 .9969 .9970 .9971 .9972 .9973 .9974 -0.1 4247 4286 .4325 .4364 4404 4443 .4483 4522 4562 4602 2.8 .9974 .9975 .9976 9977 .9977 .9978 .9979 .9979 .9980 .9981 - 0.0 4641 4681 .4721 .4761 .4801 4840 .4880 4920 4960 5000 2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 .09 .08 .07 .06 .05 .04 .03 .02 .01 .00 3.0 .9987 .9987 .9987 9988 .9988 .9989 9989 .9989 .9990 .9990
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman