The pMOSFET has e) V₁=-IV, AC CIN R₁ 'k' W=0.5mA/V²,V₁0⁰ "L R₁ 1.6 M V R₂ 820k DD = 10V Rs 2K W f) Overall voltage gain_G₁=1 / RD 1K R. R₁ 1K + a) small signal parameters gro b) Draw the small signal circuit for the amplifier c) Input resistance Rin d) Output Resistance Rout Voltage gain Ay= Vo BAZAART

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
100%
3 cont) please solve last three sub parts with given info:
### PMOSFET Amplifier Analysis

**PMOSFET Specifications:**
- Threshold voltage (\( V_t \)): -1V
- Transconductance parameter (\( k_n \)): \(\frac{1}{2}\)
- Width to length ratio (\( \frac{W}{L} \)): \(0.5 \, \text{mA/V}^2\)
- Early voltage (\( V_A \)): \(\infty\)

**Circuit Description:**
The diagram displays a PMOSFET amplifier circuit with the following components and values:

- **\( V_{DD} \)**: 10V supply voltage.
- **Resistors:**
  - \( R_1 = 1.6 \, \text{M}\Omega \)
  - \( R_2 = 820 \, \text{k}\Omega \)
  - \( R_S = 2 \, \text{k}\Omega \)
  - \( R_D = 1 \, \text{k}\Omega \)
  - \( R_L = 1 \, \text{k}\Omega \)
- **Capacitors:**
  - Input coupling capacitor (\( C_{IN} \))
  - Output coupling capacitor (\( C_{C} \))
- **MOSFET Configuration:**
  - Gate (G)
  - Source (S)
  - Drain (D)
  
**Problem Statements:**

a) **Small Signal Parameters**: Determine \( g_m \) (transconductance) and \( r_o \) (output resistance of the MOSFET).

b) **Small Signal Circuit**: Draw the small signal model of the amplifier.

c) **Input Resistance (\( R_{in} \))**: Calculate the input resistance of the amplifier circuit.

d) **Output Resistance (\( R_{out} \))**: Calculate the output resistance seen from the output node.

e) **Voltage Gain (\( A_V \))**: Calculate the voltage gain of the amplifier (\( A_V = \frac{v_o}{v_i} \)), where \( v_o \) is the output voltage and \( v_i \) is the input voltage.

f) **Overall Voltage Gain (\( G_V \))**: Calculate the overall voltage gain (\( G_V = \frac{v_o}{v_s} \)), where \( v_s \) is the source voltage.
Transcribed Image Text:### PMOSFET Amplifier Analysis **PMOSFET Specifications:** - Threshold voltage (\( V_t \)): -1V - Transconductance parameter (\( k_n \)): \(\frac{1}{2}\) - Width to length ratio (\( \frac{W}{L} \)): \(0.5 \, \text{mA/V}^2\) - Early voltage (\( V_A \)): \(\infty\) **Circuit Description:** The diagram displays a PMOSFET amplifier circuit with the following components and values: - **\( V_{DD} \)**: 10V supply voltage. - **Resistors:** - \( R_1 = 1.6 \, \text{M}\Omega \) - \( R_2 = 820 \, \text{k}\Omega \) - \( R_S = 2 \, \text{k}\Omega \) - \( R_D = 1 \, \text{k}\Omega \) - \( R_L = 1 \, \text{k}\Omega \) - **Capacitors:** - Input coupling capacitor (\( C_{IN} \)) - Output coupling capacitor (\( C_{C} \)) - **MOSFET Configuration:** - Gate (G) - Source (S) - Drain (D) **Problem Statements:** a) **Small Signal Parameters**: Determine \( g_m \) (transconductance) and \( r_o \) (output resistance of the MOSFET). b) **Small Signal Circuit**: Draw the small signal model of the amplifier. c) **Input Resistance (\( R_{in} \))**: Calculate the input resistance of the amplifier circuit. d) **Output Resistance (\( R_{out} \))**: Calculate the output resistance seen from the output node. e) **Voltage Gain (\( A_V \))**: Calculate the voltage gain of the amplifier (\( A_V = \frac{v_o}{v_i} \)), where \( v_o \) is the output voltage and \( v_i \) is the input voltage. f) **Overall Voltage Gain (\( G_V \))**: Calculate the overall voltage gain (\( G_V = \frac{v_o}{v_s} \)), where \( v_s \) is the source voltage.
**Transcription for Educational Website:**

**Equations and Calculations:**

1. \( V_{ds} = 5 \times \frac{3}{5} = 3 \, V \)

2. \( V_s = (I_D + x) = 2 \, I_D \)

3. \( I_{D} = \frac{k_n}{2} (V_{gs} - V_T)^2 \)

4. \( I_{D} = 0.5 (3 - 2 \, I_D - 1) \)

5. \( 2 \, I_D = 4 (1 - I_D) \)

6. \( x \, I_D = \frac{1}{2} (I_D^2 + 1 - 2 \, I_D) \)

7. \( I_D^2 + 1 - 2.5 \, I_D = 0 \)

8. \( I_D = \frac{2.5 + \sqrt{6.25 - 4}}{2} \)

9. **Final Result:**
   \[ I_{D} = 0.5 \, \mu A \]

**Additional Calculations:**

1. \( g_m = \sqrt{2 \, k_n \, I_D} \)

   \[ g_m = \sqrt{2 \times 1 \times 0.5} \]

   \[ g_m = 1 \, mA/V \]

2. \( g_o = \frac{V_A}{I_D} \) as \( V_A \to 0 \)

   \[ g_o = 6 \]

**Small Signal Equivalent:**

- Capacitors are considered as short circuits.

**Diagram Analysis:**

- The diagram shows a small signal equivalent circuit with resistors and dependent sources:

  - **Resistors:** 1kΩ, 2.4kΩ, 4kΩ
  - **Voltage-controlled current source:** \( g_m V_{gs} \)

**Additional Calculation:**

1. \( R_{in} = (1 \, k \Omega) + \left( \frac{2 \times 4}{2 + 4} \, k \Omega \right) \)

   \[ R_{in} = (1 \, k \Omega) + 1.2 \,
Transcribed Image Text:**Transcription for Educational Website:** **Equations and Calculations:** 1. \( V_{ds} = 5 \times \frac{3}{5} = 3 \, V \) 2. \( V_s = (I_D + x) = 2 \, I_D \) 3. \( I_{D} = \frac{k_n}{2} (V_{gs} - V_T)^2 \) 4. \( I_{D} = 0.5 (3 - 2 \, I_D - 1) \) 5. \( 2 \, I_D = 4 (1 - I_D) \) 6. \( x \, I_D = \frac{1}{2} (I_D^2 + 1 - 2 \, I_D) \) 7. \( I_D^2 + 1 - 2.5 \, I_D = 0 \) 8. \( I_D = \frac{2.5 + \sqrt{6.25 - 4}}{2} \) 9. **Final Result:** \[ I_{D} = 0.5 \, \mu A \] **Additional Calculations:** 1. \( g_m = \sqrt{2 \, k_n \, I_D} \) \[ g_m = \sqrt{2 \times 1 \times 0.5} \] \[ g_m = 1 \, mA/V \] 2. \( g_o = \frac{V_A}{I_D} \) as \( V_A \to 0 \) \[ g_o = 6 \] **Small Signal Equivalent:** - Capacitors are considered as short circuits. **Diagram Analysis:** - The diagram shows a small signal equivalent circuit with resistors and dependent sources: - **Resistors:** 1kΩ, 2.4kΩ, 4kΩ - **Voltage-controlled current source:** \( g_m V_{gs} \) **Additional Calculation:** 1. \( R_{in} = (1 \, k \Omega) + \left( \frac{2 \times 4}{2 + 4} \, k \Omega \right) \) \[ R_{in} = (1 \, k \Omega) + 1.2 \,
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
MOS logic circuit
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,