The owner of a packing lot wishes to park x vans and y cars for persons attending a function. The lot provides space for no more than 60 vehicles. (i) Write an inequality to represent this information. To get a good bargain, he must provide parking space for at least 10 cars. (ii) Write an inequality to respresent this information. The number of cars parked must be fewer than or equal to twice the number of vans parked. (iii) Write an inequality to represent
1. The owner of a packing lot wishes to park x vans and y cars for persons attending a function. The lot provides space for no more than 60 vehicles.
(i) Write an inequality to represent this information.
To get a good bargain, he must provide parking space for at least 10 cars.
(ii) Write an inequality to respresent this information.
The number of cars parked must be fewer than or equal to twice the number of vans parked.
(iii) Write an inequality to represent this information.
(iv) (a) Using a scale of 2 cm to represent 10 vans on the x-axis and 2 cm to represent 10 cars on the y-axis, draw the graphs of the lines associated with the inequalities at (i),(ii) and (iii) above.
(b) Identify by shading, the region which satisfies all three inequalities.
The parking fee for a van is $6 and for a car is $5.
(v) Write an expression in x and y for the total fees charged for parking x vans and y cars.
(vi) Using your graph write down the coordinates of the vertices of the shaded region.
Step by step
Solved in 3 steps with 2 images