The oneline diagram of the system is shown in Fig.E5-1. The data for the components in the system are given in per unit in Tables E6-1,2 and 3. The base values are Sbase=100 MVA, Vbase 15 kV at bus 1. The ratings of the devices are: Generator Gl: 400 MVA, 15 kV 800 MVA, 15 kV Generator G2: Transformer T1: 400 MVA, 15 A/345 Y kV Transformer T2: 800 MVA, 345 Y/15 A kV Lengths of transmission lines: L1=200 mi, L2=100 mi, L3-50 mi. T1 ° ㅁㅁ L3 L2 Ll 800 MW 280 Mvar FIGURE E5-1 ㅁㅁ T2 TABLE E5-1 Bus input data 80 MW V 8 Po QG PL QL Bus Туре QCmax QGmin p.u degrees p.u. p.u. p.u. p.u. p.u. p.u. 1 Swing 1.0 0 - - 0 0 - 2 Load 0 0 8.0 2.8 - Voltage- 3 1.05 5.2 - 0.8 0.4 4.0 -2.4 controlled 4 Load 0 0 0 0 0 5 Load 0 0 0 0 0 TABLE E5-2 Line input data R X G B Maximum MVA Bus-to-bus p.u. p.u. p.u. p.u. p.u. 2-4 0.009 0.1 0 1.72 12.0 2-5 0.0045 0.050 0 0.88 12.0 4-5 0.00225 0.025 0 0.44 12.0 TABLE E5-3 Transformer input data R x Ge B Maximum MVA Bus-to-bus p.u. p.u. p.u. p.u. p.u. 1-5 0.0015 0.02 0 1.72 6.0 2-5 0.00075 0.01 0 0.88 10.0 (a) Calculate Ybus for the system using the data in the tables. (b) Using the initial values given in Table 1, perform one Gauss-Seidel iteration for bus 2 and 3 voltages V₂(1) and V3(1). Note that bus 3 is a voltage-controlled bus. Therefore, correction must be applied to the magnitude of V3(1) to force it to have the specified value (||=1.05). (c) In the Newton-Raphson method, calculate the initial power mismatches at all the buses 2-5. Also, calculate the Jacobian matrix elements of the partition J11. (NOTE: a power mismatch at a bus "k" is defined as AP(n) = Pack - Pai(n), where P is the scheduled real power and P(n) is the power calculated from the power flow equation after iteration n.

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter3: Power Transformers
Section: Chapter Questions
Problem 3.33P: Consider the three single-phase two-winding transformers shown in Figure 3.37. The high-voltage...
Question

Please solve section b) step by step in detail and also please no ai or chat gpt answers they are wrong thank you. 

The oneline diagram of the system is shown in Fig.E5-1. The data for the components in
the system are given in per unit in Tables E6-1,2 and 3. The base values are Sbase=100
MVA, Vbase 15 kV at bus 1. The ratings of the devices are:
Generator Gl:
400 MVA, 15 kV
800 MVA, 15 kV
Generator G2:
Transformer T1:
400 MVA, 15 A/345 Y kV
Transformer T2:
800 MVA, 345 Y/15 A kV
Lengths of transmission lines: L1=200 mi, L2=100 mi, L3-50 mi.
T1
°
ㅁㅁ
L3
L2
Ll
800 MW
280 Mvar
FIGURE E5-1
ㅁㅁ
T2
TABLE E5-1 Bus input data
80 MW
V
8
Po
QG
PL
QL
Bus
Туре
QCmax
QGmin
p.u
degrees
p.u.
p.u.
p.u.
p.u.
p.u.
p.u.
1
Swing
1.0
0
-
-
0
0
-
2
Load
0
0
8.0
2.8
-
Voltage-
3
1.05
5.2
-
0.8
0.4
4.0
-2.4
controlled
4
Load
0
0
0
0
0
5
Load
0
0
0
0
0
Transcribed Image Text:The oneline diagram of the system is shown in Fig.E5-1. The data for the components in the system are given in per unit in Tables E6-1,2 and 3. The base values are Sbase=100 MVA, Vbase 15 kV at bus 1. The ratings of the devices are: Generator Gl: 400 MVA, 15 kV 800 MVA, 15 kV Generator G2: Transformer T1: 400 MVA, 15 A/345 Y kV Transformer T2: 800 MVA, 345 Y/15 A kV Lengths of transmission lines: L1=200 mi, L2=100 mi, L3-50 mi. T1 ° ㅁㅁ L3 L2 Ll 800 MW 280 Mvar FIGURE E5-1 ㅁㅁ T2 TABLE E5-1 Bus input data 80 MW V 8 Po QG PL QL Bus Туре QCmax QGmin p.u degrees p.u. p.u. p.u. p.u. p.u. p.u. 1 Swing 1.0 0 - - 0 0 - 2 Load 0 0 8.0 2.8 - Voltage- 3 1.05 5.2 - 0.8 0.4 4.0 -2.4 controlled 4 Load 0 0 0 0 0 5 Load 0 0 0 0 0
TABLE E5-2 Line input data
R
X
G
B
Maximum MVA
Bus-to-bus
p.u.
p.u.
p.u.
p.u.
p.u.
2-4
0.009
0.1
0
1.72
12.0
2-5
0.0045
0.050
0
0.88
12.0
4-5
0.00225
0.025
0
0.44
12.0
TABLE E5-3 Transformer input data
R
x
Ge
B
Maximum MVA
Bus-to-bus
p.u.
p.u.
p.u.
p.u.
p.u.
1-5
0.0015
0.02
0
1.72
6.0
2-5
0.00075
0.01
0
0.88
10.0
(a) Calculate Ybus for the system using the data in the tables.
(b) Using the initial values given in Table 1, perform one Gauss-Seidel iteration
for bus 2 and 3 voltages V₂(1) and V3(1). Note that bus 3 is a voltage-controlled
bus. Therefore, correction must be applied to the magnitude of V3(1) to force it
to have the specified value (||=1.05).
(c) In the Newton-Raphson method, calculate the initial power mismatches at all
the buses 2-5. Also, calculate the Jacobian matrix elements of the partition J11.
(NOTE: a power mismatch at a bus "k" is defined as AP(n) = Pack - Pai(n),
where P is the scheduled real power and P(n) is the power calculated
from the power flow equation after iteration n.
Transcribed Image Text:TABLE E5-2 Line input data R X G B Maximum MVA Bus-to-bus p.u. p.u. p.u. p.u. p.u. 2-4 0.009 0.1 0 1.72 12.0 2-5 0.0045 0.050 0 0.88 12.0 4-5 0.00225 0.025 0 0.44 12.0 TABLE E5-3 Transformer input data R x Ge B Maximum MVA Bus-to-bus p.u. p.u. p.u. p.u. p.u. 1-5 0.0015 0.02 0 1.72 6.0 2-5 0.00075 0.01 0 0.88 10.0 (a) Calculate Ybus for the system using the data in the tables. (b) Using the initial values given in Table 1, perform one Gauss-Seidel iteration for bus 2 and 3 voltages V₂(1) and V3(1). Note that bus 3 is a voltage-controlled bus. Therefore, correction must be applied to the magnitude of V3(1) to force it to have the specified value (||=1.05). (c) In the Newton-Raphson method, calculate the initial power mismatches at all the buses 2-5. Also, calculate the Jacobian matrix elements of the partition J11. (NOTE: a power mismatch at a bus "k" is defined as AP(n) = Pack - Pai(n), where P is the scheduled real power and P(n) is the power calculated from the power flow equation after iteration n.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning