The motion of an oscillating flywheel is defined by the relation 0 = ® ge¯*t cos 4xt, where 0 is expressed in radians and 1 in seconds. Knowing that 0, = 0.5 rad, determine the angular coordinate, the angular velocity, and the angular acceleration of the flywheel when (a) t = 0, (b) t = 0.125 s. -3m1

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The motion of an oscillating flywheel is defined by the relation
0 = 0ge* cos 4nt, where 0 is expressed in radians and t in seconds. Knowing
that 0, = 0.5 rad, determine the angular coordinate, the angular velocity, and the
angular acceleration of the flywheel when (a) t = 0, (b) t = 0.125 s.
-371
Transcribed Image Text:The motion of an oscillating flywheel is defined by the relation 0 = 0ge* cos 4nt, where 0 is expressed in radians and t in seconds. Knowing that 0, = 0.5 rad, determine the angular coordinate, the angular velocity, and the angular acceleration of the flywheel when (a) t = 0, (b) t = 0.125 s. -371
Expert Solution
Step 1

Given data: Motion of flywheel is represented by the relation θ =θ0 e-3πt cos 4πt 

                    θ0 =0.5 rad

 

To determine: Angular coordinate at t =0 & t = 0.125 s

                        Angular velocity at t =0 & t = 0.125 s

                        Angular acceleration at t =0 & t = 0.125 s 

Step 2

As equation of flywheel is given as θ =θ0 e-3πt cos 4πt 

Case 1: First we will calculate angular coordinate at t = 0 s  & t = 0.125 s

 

Putting t=0 in equation of flywheel we get θ =θ0 e-3πt cos 4πt =0.5×e0 cos 4π×0 = 0.5 radiansFor t = 0.125 s we get θ =θ0 e-3πt cos 4πt =0.5×e-3π×0.125 cos 4π×0.125 = 0 radians

 

Case 2:  Now we will calculate the angular velocity at t = 0 s  & t = 0.125 s

 

Differentiating the equation of flywheel once we getω=dt =ddtθ0 e-3πt cos 4πt =0.5 -3πe-3πtcos 4πt -4πe-3πtsin4πt For t = 0 we have ω =-0.5 3πe-3πtcos 4πt + 4πe-3πtsin4πt  =-0.5×3π =-4.71 rad/sFor t =0.125 s we get ω =-0.5 3πe-3πtcos 4πt + 4πe-3πtsin4πt  =-0.5×4π ×0.30786 =-1.934 rad/s

 

 

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Types of Properties of Engineering Materials
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY