The molecule shown below is H,C -o O glucose O cholesterol O none is correct O adenine O phospholipid
The molecule shown below is H,C -o O glucose O cholesterol O none is correct O adenine O phospholipid
Biochemistry
9th Edition
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Chapter1: Biochemistry: An Evolving Science
Section: Chapter Questions
Problem 1P
Related questions
Question

In the diagram above, a triglyceride molecule is depicted. Triglycerides are a type of lipid found in your blood. They are made up of three fatty acid chains attached to a glycerol backbone, as shown in the figure. Here, the fatty acid chains are represented as long zig-zag lines attached to the glycerol molecule through ester bonds. The glycerol backbone and ester linkages are highlighted in pink, while the fatty acid chains are shown in black.
- **Options presented for identification**:
- O glucose
- O cholesterol
- O none is correct
- O adenine
- O phospholipid
To identify the molecule correctly, it is essential to note that glucose, cholesterol, adenine, and phospholipids have different structures and functions within biological systems. The structure in question clearly matches that of a triglyceride due to the presence of three fatty acid chains esterified to a glycerol molecule.
Incorrect Choices:
- **Glucose** is a simple sugar with a six-carbon ring structure.
- **Cholesterol** is a lipid but has a different structure characterized by four hydrocarbon rings.
- **Adenine** is a nucleic acid base with a distinct double-ring structure.
- **Phospholipid** would include a phosphate group and typically has two fatty acid tails, not three.
Correct Identification:
- **None is correct**: The molecule shown is a triglyceride, which is not listed among the options. Therefore, the correct answer given the choices should be "none is correct."
Always ensure to understand the core structure and characteristic features of common biological molecules for accurate identification.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e5efc23-a198-4327-bdc7-d2931bd5f43b%2Ff2255b65-3213-46c7-97dd-61f7b1c7d48d%2F1isnv0j_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Understanding Molecule Structures: Triglycerides**
*The molecule shown below is?*

In the diagram above, a triglyceride molecule is depicted. Triglycerides are a type of lipid found in your blood. They are made up of three fatty acid chains attached to a glycerol backbone, as shown in the figure. Here, the fatty acid chains are represented as long zig-zag lines attached to the glycerol molecule through ester bonds. The glycerol backbone and ester linkages are highlighted in pink, while the fatty acid chains are shown in black.
- **Options presented for identification**:
- O glucose
- O cholesterol
- O none is correct
- O adenine
- O phospholipid
To identify the molecule correctly, it is essential to note that glucose, cholesterol, adenine, and phospholipids have different structures and functions within biological systems. The structure in question clearly matches that of a triglyceride due to the presence of three fatty acid chains esterified to a glycerol molecule.
Incorrect Choices:
- **Glucose** is a simple sugar with a six-carbon ring structure.
- **Cholesterol** is a lipid but has a different structure characterized by four hydrocarbon rings.
- **Adenine** is a nucleic acid base with a distinct double-ring structure.
- **Phospholipid** would include a phosphate group and typically has two fatty acid tails, not three.
Correct Identification:
- **None is correct**: The molecule shown is a triglyceride, which is not listed among the options. Therefore, the correct answer given the choices should be "none is correct."
Always ensure to understand the core structure and characteristic features of common biological molecules for accurate identification.

Transcribed Image Text:### Kinetics of Competitive Inhibition in Comparison with a Control Non-Inhibited Enzyme Catalyzed Reaction
This section explores how competitive inhibitors affect the kinetics of enzyme reactions. Read through the possible outcomes and choose the one that correctly depicts the changes in maximum reaction rate (Vmax) and the Michaelis constant (Km) when competitive inhibition is present.
**Question:**
How does competitive inhibition affect the kinetics of an enzyme-catalyzed reaction compared to a control (non-inhibited) reaction?
**Options:**
1. Vmax stays the same, Km decreases
2. Vmax stays the same, Km is unchanged
3. Vmax increases, Km is unchanged
4. Vmax decreases, Km is unchanged
5. Vmax stays the same, Km increases
**Explanation:**
- **Vmax**: The maximum rate of the reaction when the enzyme is saturated with substrate.
- **Km**: The substrate concentration at which the reaction rate is half of Vmax; it indicates the enzyme's affinity for the substrate.
In competitive inhibition, the inhibitor competes with the substrate for binding to the enzyme's active site. This type of inhibition affects the enzyme's kinetics as follows:
- **Vmax** remains the same because the maximum rate can still be achieved if the substrate concentration is high enough to outcompete the inhibitor.
- **Km** increases because a higher substrate concentration is needed to reach the same rate of reaction, indicating a lower affinity of the enzyme for the substrate in the presence of the inhibitor.
**Correct Answer:** Vmax stays the same, Km increases
This information is important for understanding enzyme behavior in the presence of inhibitors, which has implications in fields like biochemistry, pharmacology, and medicine.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman

Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman

Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY

Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman

Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman

Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY

Biochemistry
Biochemistry
ISBN:
9781305961135
Author:
Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:
Cengage Learning

Biochemistry
Biochemistry
ISBN:
9781305577206
Author:
Reginald H. Garrett, Charles M. Grisham
Publisher:
Cengage Learning

Fundamentals of General, Organic, and Biological …
Biochemistry
ISBN:
9780134015187
Author:
John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:
PEARSON