The mass M_1 slides on a 45 degree incline surface with a height of H, as shown in the figure . The mass is connected by a flexible rope, over a small pulley (its mass is neglected) and connected to another mass M_2 whose mass is equal to the previous block and is vertically hanging as shown below. The rope is long enough for two blocks to be at rest at height H/2 . The dimensions of the two blocks and the pulley are neglected compared to the height H, the blocks were left to move freely at time t=0 1- At time t> 0 find the vertical acceleration of the mass m_2 2- Which of the two blocks moves down? Calculate the time when it will hit the ground? 3- If the block stopped in the previous paragraph when it hit the ground, but the other block continued to move, clarify whether or not it will hit the pulley. Why?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%

The mass M_1 slides on a 45 degree incline surface with a height of H, as shown in the figure . The mass is connected by a flexible rope, over a small pulley (its mass is neglected) and connected to another mass M_2 whose mass is equal to the previous block and is vertically hanging as shown below. The rope is long enough for two blocks to be at rest at height H/2 . The dimensions of the two blocks and the pulley are neglected compared to the height H, the blocks were left to move freely at time t=0

1- At time t> 0 find the vertical acceleration of the mass m_2

2- Which of the two blocks moves down? Calculate the time when it will hit the ground?

3- If the block stopped in the previous paragraph when it hit the ground, but the other block continued to move, clarify whether or not it will hit the pulley. Why?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Length contraction and Lorentz equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON