The liquid phase reaction A + B → C follows an elementary law of velocity and occurs isothermally in a flow-through system. The rules for the feed streams of A and B are 2.0 mol/L before mixing. The volumetric flow rate of each stream is 5 dm3/min, and the inlet temperature is 300 K. The streams are mixed just before entering. Two reactors are available. One is a 200 dm3 CSTR, which can be heated to 77oC or cooled to 0oC; another is an 800 dm3 PFR, operated at 300 K, which cannot be heated or cooled. Note that k = 0.07 dm3 / mol.min at 300K and E = 20 kcal / mol. (A) What conversion would be achieved if the CSTR and PFR were operated at 300K and connected in series? And in parallel with 5 mols/min each? (B)Knowing that the operating times (loading, unloading, heating, cleaning, etc.) of the batch reactor is around 3 h, what volume of batch reactor would be necessary to process, per day, the same amount of species A as in reactors with Flow so as to achieve 90% conversion?
The liquid phase reaction A + B → C follows an elementary law of velocity and occurs isothermally in a flow-through system. The rules for the feed streams of A and B are 2.0 mol/L before mixing. The volumetric flow rate of each stream is 5 dm3/min, and the inlet temperature is 300 K. The streams are mixed just before entering. Two reactors are available. One is a 200 dm3 CSTR, which can be heated to 77oC or cooled to 0oC; another is an 800 dm3 PFR, operated at 300 K, which cannot be heated or cooled. Note that k = 0.07 dm3 / mol.min at 300K and E = 20 kcal / mol.
(A) What conversion would be achieved if the CSTR and PFR were operated at 300K and connected in series? And in parallel with 5 mols/min each?
(B)Knowing that the operating times (loading, unloading, heating, cleaning, etc.) of the batch reactor is around 3 h, what volume of batch reactor would be necessary to process, per day, the same amount of species A as in reactors with Flow so as to achieve 90% conversion?

Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 2 images









