The liquid drop model may be used to determine the nuclear binding energy for an isotope. This model uses the semiempirical binding energy formula, which takes into consideration four major effects (one term per effect) that contribute to the nuclear binding energy. The semiempirical binding energy formula may be expressed as: Z(Z - 1) C3 A1/3 (N – z)2 E, = C;A – C,A?/3 A The first term is the volume term, the second is the surface term, the third is the Coulomb term, and the fourth is the symmetry term. For nuclei having A 2 15, the constants have the following values: = 15.7 MeV, C, = 17.8 MeV, C3 = 0.71 MeV, and C. = 23.6 MeV 56 (a) Use the semiempirical binding energy formula to determine the nuclear binding energy (in MeV) for the isotope Fe. 26 MeV (b) Determine the percentage contribution to the binding energy by each of the four terms. (You should expect positive and negative values, but the sum should be 100%. Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) volume term % surface term % Coulomb term symmetry term %

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
The liquid drop model may be used to determine the nuclear binding energy for an isotope. This model uses the semiempirical binding energy formula, which takes into consideration four major effects (one term per effect) that contribute to the nuclear binding energy. The semiempirical binding energy formula may be expressed as:
Z(Z - 1)
C3
A1/3
(N – z)2
E, = C;A – C,A?/3
A
The first term is the volume term, the second is the surface term, the third is the Coulomb term, and the fourth is the symmetry term. For nuclei having A 2 15, the constants have the following values:
= 15.7 MeV, C, = 17.8 MeV, C3
= 0.71 MeV, and C.
= 23.6 MeV
56
(a) Use the semiempirical binding energy formula to determine the nuclear binding energy (in MeV) for the isotope
Fe.
26
MeV
(b) Determine the percentage contribution to the binding energy by each of the four terms. (You should expect positive and negative values, but the sum should be 100%. Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.)
volume term
%
surface term
%
Coulomb term
symmetry term
%
Transcribed Image Text:The liquid drop model may be used to determine the nuclear binding energy for an isotope. This model uses the semiempirical binding energy formula, which takes into consideration four major effects (one term per effect) that contribute to the nuclear binding energy. The semiempirical binding energy formula may be expressed as: Z(Z - 1) C3 A1/3 (N – z)2 E, = C;A – C,A?/3 A The first term is the volume term, the second is the surface term, the third is the Coulomb term, and the fourth is the symmetry term. For nuclei having A 2 15, the constants have the following values: = 15.7 MeV, C, = 17.8 MeV, C3 = 0.71 MeV, and C. = 23.6 MeV 56 (a) Use the semiempirical binding energy formula to determine the nuclear binding energy (in MeV) for the isotope Fe. 26 MeV (b) Determine the percentage contribution to the binding energy by each of the four terms. (You should expect positive and negative values, but the sum should be 100%. Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) volume term % surface term % Coulomb term symmetry term %
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Nuclear Fusion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON