The inverse Laplace Transform of the function f(t) is . Find the function f(t). O f(t)=0, if t<4 and f(t)-4, if t>4 O f(t)=0, if t<4 and f(t)-t^2, if t>4 O f(t)=0, if t<4 and f(t)-t-4, if t>4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Topic Video
Question
100%

I need some help in how to solve the problem. I will appreciate some help

The inverse Laplace Transform of the function f(t) is
Find the function f(t).
f(t)=0, if t<4 and f(t)=4, if t>4
f(t)=0, if t<4 and f(t)=t^2, if t>4
f(t)=0, if t<4 and f(t)-t-4, if t>4
f(t)=0, if t<4 and f(t)=t, if t>4
None of the above
f(t)=0, if t<4 and f(t)=-4, if t>4
f(t)=0, if t<4 and f(t)=t^2-4, if t>4
Transcribed Image Text:The inverse Laplace Transform of the function f(t) is Find the function f(t). f(t)=0, if t<4 and f(t)=4, if t>4 f(t)=0, if t<4 and f(t)=t^2, if t>4 f(t)=0, if t<4 and f(t)-t-4, if t>4 f(t)=0, if t<4 and f(t)=t, if t>4 None of the above f(t)=0, if t<4 and f(t)=-4, if t>4 f(t)=0, if t<4 and f(t)=t^2-4, if t>4
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Application of Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,