The International Space Station (ISS) has a mass of about 441,000 kg and orbits at a height of about 4.0 x 105 meters above the surface of Earth. If the average U.S. household uses about 40 billion joules (4.0 x 1010 J) of energy in a year, how many households could be powered for a year by the gravitational potential energy stored in the ISS? The height of the ISS above Earth's surface is small enough that you can still use mgh as a reasonable approximation to calculate the gravitational potential energy.
The International Space Station (ISS) has a mass of about 441,000 kg and orbits at a height of about 4.0 x 105 meters above the surface of Earth. If the average U.S. household uses about 40 billion joules (4.0 x 1010 J) of energy in a year, how many households could be powered for a year by the gravitational potential energy stored in the ISS? The height of the ISS above Earth's surface is small enough that you can still use mgh as a reasonable approximation to calculate the gravitational potential energy.
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter7: Gravity
Section: Chapter Questions
Problem 14PQ: Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility...
Question
The International Space Station (ISS) has a mass of about 441,000 kg and orbits at a height of about 4.0 x 105 meters above the surface of Earth. If the average U.S. household uses about 40 billion joules (4.0 x 1010 J) of energy in a year, how many households could be powered for a year by the gravitational potential energy stored in the ISS? The height of the ISS above Earth's surface is small enough that you can still use mgh as a reasonable approximation to calculate the gravitational potential energy.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning