The inner pipe of a double-pipe heat exchanger has an OD of 1.9 in. and contains 36 rectangular fins of the type shown in the sketch below. The fins are made of steel (k = 34.9 Btu/h *ft *F) and are 0.5 in. high and 0.035 in. thick. The pipe wall temperature is 250 F and the fluid in the annulus surrounding the fins is at 150 F with a heat-transfer coefficient of 30 Btu/h * ft2 * F. Calculate:(a) The fin efficiency.(b) The rate of heat transfer from one fin per foot of pipe length.(c) The prime surface area per foot of pipe length.(d) The rate of heat transfer from the prime surface per foot of pipe length.(e) The weighted efficiency of the finned surface.(f) The total rate of heat transfer (from fins and prime surface) per foot of pipe length.(g) The thermal duty for the exchanger is 390,000 Btu/h. What length of pipe is required to satisfy this duty?

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

The inner pipe of a double-pipe heat exchanger has an OD of 1.9 in. and contains 36 rectangular fins of the type shown in the sketch below. The fins are made of steel (k = 34.9 Btu/h *ft *F) and are 0.5 in. high and 0.035 in. thick. The pipe wall temperature is 250 F and the fluid in the annulus surrounding the fins is at 150 F with a heat-transfer coefficient of 30 Btu/h * ft2 * F. Calculate:
(a) The fin efficiency.
(b) The rate of heat transfer from one fin per foot of pipe length.
(c) The prime surface area per foot of pipe length.
(d) The rate of heat transfer from the prime surface per foot of pipe length.
(e) The weighted efficiency of the finned surface.
(f) The total rate of heat transfer (from fins and prime surface) per foot of pipe length.
(g) The thermal duty for the exchanger is 390,000 Btu/h. What length of pipe is required to satisfy this duty?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 7 images

Blurred answer
Knowledge Booster
Steady state conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The