The graph shows the displacement from equilibrium of a mass-spring system as a function of time after the vertically hanging system was set in motion at time t = 0. Assume that the units of time are seconds, and the units of displacement are centimeters. The first t-intercept is (0.75, 0) and the first minimum has coordinates (1.75,-4). (a) What is the period T of the periodic motion? T = seconds (b) What is the frequency f in Hertz? What is the angular frequency w in radians / second? f = Hertz radians / second W= (d) Determine the amplitude A and the phase angley (in radians), and express the displacement in the form y(t) = A cos(wty), with y in meters. y(t) = meters

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
The graph shows the displacement from equilibrium of a mass-spring system as a function of time after the
vertically hanging system was set in motion at time t = 0. Assume that the units of time are seconds, and the
units of displacement are centimeters. The first t-intercept is (0.75, 0) and the first minimum has coordinates
(1.75,-4).
(a) What is the period T of the periodic motion?
T =
seconds
(b) What is the frequency f in Hertz? What is the angular frequency w in radians / second?
f =
Hertz
W =
radians / second
(d) Determine the amplitude A and the phase angle y (in radians), and express the displacement in the form
y(t) = A cos(wt - y), with y in meters.
y(t) =
meters
(e) with what initial displacement y(0) and initial velocity y'(0) was the system set into motion?
y(0) =
meters
y'(0) =
meters / second
***
Transcribed Image Text:The graph shows the displacement from equilibrium of a mass-spring system as a function of time after the vertically hanging system was set in motion at time t = 0. Assume that the units of time are seconds, and the units of displacement are centimeters. The first t-intercept is (0.75, 0) and the first minimum has coordinates (1.75,-4). (a) What is the period T of the periodic motion? T = seconds (b) What is the frequency f in Hertz? What is the angular frequency w in radians / second? f = Hertz W = radians / second (d) Determine the amplitude A and the phase angle y (in radians), and express the displacement in the form y(t) = A cos(wt - y), with y in meters. y(t) = meters (e) with what initial displacement y(0) and initial velocity y'(0) was the system set into motion? y(0) = meters y'(0) = meters / second ***
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Normal Modes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON