the general solution to a harmonic oscillator are related. There are two common forms for the general solution for the position of a harmonic oscillator as a function of time t: 1. x(t) = A cos (wt + p) and 2. x(t) = C cos (wt) + S sin (wt). Either of these equations is a general solution of a second-order differential equation (F= mā); hence both must have at least two--arbitrary constants--parameters that can be adjusted to fit the solution to the particular motion at hand. (Some texts refer to these arbitrary constants as boundary values.) Part D Find analytic expressions for the arbitrary constants A and in Equation 1 (found in Part A) in terms of the constants C and Sin Equation 2 (found in Part B), which are now considered as given parameters. Express the amplitude A and phase (separated by a comma) in terms of C and S. ► View Available Hint(s) A, O= IVE ΑΣΦ ?
the general solution to a harmonic oscillator are related. There are two common forms for the general solution for the position of a harmonic oscillator as a function of time t: 1. x(t) = A cos (wt + p) and 2. x(t) = C cos (wt) + S sin (wt). Either of these equations is a general solution of a second-order differential equation (F= mā); hence both must have at least two--arbitrary constants--parameters that can be adjusted to fit the solution to the particular motion at hand. (Some texts refer to these arbitrary constants as boundary values.) Part D Find analytic expressions for the arbitrary constants A and in Equation 1 (found in Part A) in terms of the constants C and Sin Equation 2 (found in Part B), which are now considered as given parameters. Express the amplitude A and phase (separated by a comma) in terms of C and S. ► View Available Hint(s) A, O= IVE ΑΣΦ ?
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images