The function is the revenue function for selling widgets and gizmos with demand price functions PriceGizmos = 31 • 0.94QuantityGiamos/100- QuantityWidgets 306 PriceWidgets = 19 • 0.85QuantityWidgeta/150 QuantityGizmos 250 and, P = (QuanityGizmos, QuantityWidgets) = (762, 401) and P; = (729, 422) a. Give the 2 functions of one variable through P, obtained by holding each variable constant. (Use the variables QW and QG) Revenue(762, QW) - 762 · ( 19.3462 – QW 306 762 250 QW- 19 0.85 Revenue(QG, 401) =- QG · (31 ·0.94 00 OG 250 401 + 401 · (12.3046 306 b. Find the partial derivatives of the original function. (Use the variables QW and QG) Revenuega(QG, QW) = 29.14 T0 · (1 - f00 In(29.14)) - Qw( 306 * 250) OG Revenueqw(QG, QW) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
The function is the revenue function for selling widgets and gizmos with demand price functions
PriceGizmos = 31 + 0.94QuantityGizmos/100
PriceWidgets = 19 • 0.85QuantityWidgets/150
and, P = (QuanityGizmos, QuantityWidgets) = (762, 401) and P, = (729, 422)
QuantityWidgets
306
QuantityGizmos
250
a. Give the 2 functions of one variable through P, obtained by holding each variable constant. (Use the
variables QW and QG)
OW
Revenue(762, QW) - 762 · (19.3462
306
ow (w os
762
250
+ QW
150
0.85
OG
401
306
+ 401 · (12.3046 – OG
250
Revenue(QG, 401)
QG 31 · 0.94 T00
b. Find the partial derivatives of the original function. (Use the variables QW and QG)
OG
100
Revenueg(QG, QW) = 29.14
OG
100
306
250
Revenueqw(QG, QW)
Transcribed Image Text:The function is the revenue function for selling widgets and gizmos with demand price functions PriceGizmos = 31 + 0.94QuantityGizmos/100 PriceWidgets = 19 • 0.85QuantityWidgets/150 and, P = (QuanityGizmos, QuantityWidgets) = (762, 401) and P, = (729, 422) QuantityWidgets 306 QuantityGizmos 250 a. Give the 2 functions of one variable through P, obtained by holding each variable constant. (Use the variables QW and QG) OW Revenue(762, QW) - 762 · (19.3462 306 ow (w os 762 250 + QW 150 0.85 OG 401 306 + 401 · (12.3046 – OG 250 Revenue(QG, 401) QG 31 · 0.94 T00 b. Find the partial derivatives of the original function. (Use the variables QW and QG) OG 100 Revenueg(QG, QW) = 29.14 OG 100 306 250 Revenueqw(QG, QW)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,