The following table gives the sunrise and sunset times for various dates of the year in Lincroft, NJ. In order to create a function from this, we need to quantify the date into "day of year", beginning with January 1, which we will call "Day 1" (we can assume 1 corresponds to 11.59 PM on January 1, so we'll think of the New Year beginning at x- 0). This becomes our independent variable. We also turn the amount of time between sunrise and sunset into "hours of daylight", which becomes our dependent variable. 9/12 9/19 9/26 103 255 262 269 276 283 290 297 12.63 1232 1202 11.7 5:35 6:13 5:42 5:48 5:55 6:02 6:10 758 739 721 702 684 665 6.01 5.49 5:37 5:26 3:15 5:05 10'10 1017 1024 1031 117 I/14 114 11.08 10.8 10 52 10.23 10 6:17 648 304 311 318 625 6.34 6.42 4.56 631 614 600 Sunrise Hours of Day of Year Date Sunset Minutes of 4:48 Daylight 563 569 Daylight 938 4:42 720 7:20 7:17 1/3 3. 4:43 11/22 11/29 126 12/13 1220 326 6.50 4:34 588 573 565 98 9.55 9.42 17/10 1/17 1/24 131 27 2/14 2/21 2/28 10 4:49 9.48 333 6:58 4:31 17 4:57 580 24 31 38 45 7:13 7:08 701 652 6:43 5:05 5:14 5.22 531 5:39 9.67 9.87 10.1 340 347 354 361 7:05 7:12 7:16 430 4:32 434 592 560 558 9.33 93 606 621 639 656 10.35 10 65 10.93 1227 7:19 4:37 558 93 1. The sinusoidal function that can be used to model this data is f()-2836sin (00172( x -80)) +12.164, where x is the day of the year, and ftx) gives the mumber of hours of daylight on day x. . What are the amplitude, period, and midline of the function? Round to the nearest thousandth. 52 11 23 11.55 11.85 12.17 12.48 12.78 13.1 13.38 13.68 59 6:33 5:47 674 622 6:11 3/7 3/14 3/21 3/28 5:55 693 711 66 73 80 87 6.02 6:10 6:17 730 749 6.00 5.48 537 525 Amplitude 2836 Period =7= 365.301 Midline y-12 164 b. Do these values make sense based on the data? Why or why not? The valacs make sense because the given data is numeric 44 94 6.24 767 4/11 101 631 4/18 4/25 3/2 519 5/16 5/23 3/30 786 803 821 837 852 866 878 888 896 108 115 5:15 5:05 4.56 4:48 6:38 646 122 129 6.53 7.00 7:07 13.95 14.2 136 143 150 2. Since this is a sinusoidal function, the domain is all real numbers. However, this function has a practical application. What is the practical domain of this function? Why? X= Number of days of the year 4.41 14.43 4:35 4:31 7:13 7:19 14.63 14.8 7:24 7:28 7:30 7:31 7:31 66 59E 5 50 157 428 427 427 429 4:32 14.93 15.02 15.05 15.03 14.98 Domain: (0, 365| 6/13 164 171 178 185 901 903 902 From the domain we can calculate the number of hours of sunlight| Example at x-118 F(118) - demonstratethe light an 118th day of the year. 3. Evaluate the model for July 4 and October 31. How close is the model to the actual data? 6/20 6/27 714 899 7/11 7/18 7/25 81 192 199 437 442 7.28 7.25 7:19 7:13 14.85 14.72 14.52 143 14.07 891 Round to the nearest hundredth. 883 871 July 4 4) = 2.836 sin(0.0172(x - 80)) + 12.164 r(185) = 2.836 sin(0.0172(185-80)) + 12164 - 2.836 sin(1806) + 12.164 =2.75791612 + 12.164 206 4:48 213 4.55 858 8/8 220 5.01 5.08 7:05 656 844 8/15 8/22 829 227 234 241 248 5:15 5.22 5.28 828 811 793 13.8 13.52 13.22 12.93 6:46 6.35 14.92 95 624 776
The following table gives the sunrise and sunset times for various dates of the year in Lincroft, NJ. In order to create a function from this, we need to quantify the date into "day of year", beginning with January 1, which we will call "Day 1" (we can assume 1 corresponds to 11.59 PM on January 1, so we'll think of the New Year beginning at x- 0). This becomes our independent variable. We also turn the amount of time between sunrise and sunset into "hours of daylight", which becomes our dependent variable. 9/12 9/19 9/26 103 255 262 269 276 283 290 297 12.63 1232 1202 11.7 5:35 6:13 5:42 5:48 5:55 6:02 6:10 758 739 721 702 684 665 6.01 5.49 5:37 5:26 3:15 5:05 10'10 1017 1024 1031 117 I/14 114 11.08 10.8 10 52 10.23 10 6:17 648 304 311 318 625 6.34 6.42 4.56 631 614 600 Sunrise Hours of Day of Year Date Sunset Minutes of 4:48 Daylight 563 569 Daylight 938 4:42 720 7:20 7:17 1/3 3. 4:43 11/22 11/29 126 12/13 1220 326 6.50 4:34 588 573 565 98 9.55 9.42 17/10 1/17 1/24 131 27 2/14 2/21 2/28 10 4:49 9.48 333 6:58 4:31 17 4:57 580 24 31 38 45 7:13 7:08 701 652 6:43 5:05 5:14 5.22 531 5:39 9.67 9.87 10.1 340 347 354 361 7:05 7:12 7:16 430 4:32 434 592 560 558 9.33 93 606 621 639 656 10.35 10 65 10.93 1227 7:19 4:37 558 93 1. The sinusoidal function that can be used to model this data is f()-2836sin (00172( x -80)) +12.164, where x is the day of the year, and ftx) gives the mumber of hours of daylight on day x. . What are the amplitude, period, and midline of the function? Round to the nearest thousandth. 52 11 23 11.55 11.85 12.17 12.48 12.78 13.1 13.38 13.68 59 6:33 5:47 674 622 6:11 3/7 3/14 3/21 3/28 5:55 693 711 66 73 80 87 6.02 6:10 6:17 730 749 6.00 5.48 537 525 Amplitude 2836 Period =7= 365.301 Midline y-12 164 b. Do these values make sense based on the data? Why or why not? The valacs make sense because the given data is numeric 44 94 6.24 767 4/11 101 631 4/18 4/25 3/2 519 5/16 5/23 3/30 786 803 821 837 852 866 878 888 896 108 115 5:15 5:05 4.56 4:48 6:38 646 122 129 6.53 7.00 7:07 13.95 14.2 136 143 150 2. Since this is a sinusoidal function, the domain is all real numbers. However, this function has a practical application. What is the practical domain of this function? Why? X= Number of days of the year 4.41 14.43 4:35 4:31 7:13 7:19 14.63 14.8 7:24 7:28 7:30 7:31 7:31 66 59E 5 50 157 428 427 427 429 4:32 14.93 15.02 15.05 15.03 14.98 Domain: (0, 365| 6/13 164 171 178 185 901 903 902 From the domain we can calculate the number of hours of sunlight| Example at x-118 F(118) - demonstratethe light an 118th day of the year. 3. Evaluate the model for July 4 and October 31. How close is the model to the actual data? 6/20 6/27 714 899 7/11 7/18 7/25 81 192 199 437 442 7.28 7.25 7:19 7:13 14.85 14.72 14.52 143 14.07 891 Round to the nearest hundredth. 883 871 July 4 4) = 2.836 sin(0.0172(x - 80)) + 12.164 r(185) = 2.836 sin(0.0172(185-80)) + 12164 - 2.836 sin(1806) + 12.164 =2.75791612 + 12.164 206 4:48 213 4.55 858 8/8 220 5.01 5.08 7:05 656 844 8/15 8/22 829 227 234 241 248 5:15 5.22 5.28 828 811 793 13.8 13.52 13.22 12.93 6:46 6.35 14.92 95 624 776
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
6a
6b
7a
7b
8a
8b
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 1 images
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning