The following experimentally determined data are available for the vapor-liquid equilibrium of benzene (1)/ chlorobenzene (2) at 26.0°C: p/mmHg 17.78 23.86 33.67 52.90 70.14 76.18 95.07 X1 0.0554 0.1168 0.2196 0.4304 0.6281 0.8154 0.9508 yı 0.3462 0.5382 0.7111 0.8651 0.9320 0.9684 0.9912 You may use the data in Table B.2 of Smith, et al. for the parameters in the Antoine eqation for the vapor pressures of pure benzene and pure chlorobenzene. (1) Use these VLE data to obtain appropriate values for the parameters in the van Laar and Margules models

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

Help please!

**Table B.2: Constants for the Antoine Equation for Vapor Pressures of Pure Species**

Equation: 

\[
\ln P^{\text{sat}} / \text{kPa} = A - \frac{B}{t/^\circ C + C}
\]

**Latent heat of vaporization at the normal boiling point (\( \Delta H_n \)), and normal boiling point (\( t_n \))**

| Name                     | Formula   | A†     | B      | C      | Temp. Range °C  | \( \Delta H_n \) kJ/mol | \( t_n^\circ C \) |
|--------------------------|-----------|--------|--------|--------|------------------|------------------------|----------------|
| Acetone                  | C\(_3\)H\(_6\)O  | 14.3145 | 2756.22 | 228.060 | -26—77          | 29.10                  | 56.2          |
| Acetic acid              | C\(_2\)H\(_4\)O\(_2\) | 15.0177 | 3580.80 | 224.650 | 24—142          | 23.70                  | 117.9         |
| Acetonitrile*            | C\(_2\)H\(_3\)N  | 14.8950 | 3413.12 | 250.523 | -27—81          | 30.19                  | 81.6          |
| Benzene                  | C\(_6\)H\(_6\)   | 13.7819 | 2726.81 | 217.572 | 6—104           | 30.72                  | 80.0          |
| iso-Butane               | C\(_4\)H\(_10\)  | 13.8254 | 2181.79 | 248.870 | -83—7           | 21.30                  | -11.9         |
| n-Butane                 | C\(_4\)H\(_10\)  | 13.6608 | 2154.70 | 238.789 | -73—19          | 22.44                  | 0.5           |
| 1-Butanol                |
Transcribed Image Text:**Table B.2: Constants for the Antoine Equation for Vapor Pressures of Pure Species** Equation: \[ \ln P^{\text{sat}} / \text{kPa} = A - \frac{B}{t/^\circ C + C} \] **Latent heat of vaporization at the normal boiling point (\( \Delta H_n \)), and normal boiling point (\( t_n \))** | Name | Formula | A† | B | C | Temp. Range °C | \( \Delta H_n \) kJ/mol | \( t_n^\circ C \) | |--------------------------|-----------|--------|--------|--------|------------------|------------------------|----------------| | Acetone | C\(_3\)H\(_6\)O | 14.3145 | 2756.22 | 228.060 | -26—77 | 29.10 | 56.2 | | Acetic acid | C\(_2\)H\(_4\)O\(_2\) | 15.0177 | 3580.80 | 224.650 | 24—142 | 23.70 | 117.9 | | Acetonitrile* | C\(_2\)H\(_3\)N | 14.8950 | 3413.12 | 250.523 | -27—81 | 30.19 | 81.6 | | Benzene | C\(_6\)H\(_6\) | 13.7819 | 2726.81 | 217.572 | 6—104 | 30.72 | 80.0 | | iso-Butane | C\(_4\)H\(_10\) | 13.8254 | 2181.79 | 248.870 | -83—7 | 21.30 | -11.9 | | n-Butane | C\(_4\)H\(_10\) | 13.6608 | 2154.70 | 238.789 | -73—19 | 22.44 | 0.5 | | 1-Butanol |
The following experimentally determined data are available for the vapor-liquid equilibrium of benzene (1) / chlorobenzene (2) at 26.0°C:

| p/mmHg | x₁     | y₁     |
|--------|--------|--------|
| 17.78  | 0.0554 | 0.3462 |
| 23.86  | 0.1168 | 0.5382 |
| 33.67  | 0.2196 | 0.7111 |
| 52.90  | 0.4304 | 0.8651 |
| 70.14  | 0.6281 | 0.9320 |
| 76.18  | 0.8154 | 0.9684 |
| 95.07  | 0.9508 | 0.9912 |

*Note:* You may use the data in Table B.2 of Smith, et al. for the parameters in the Antoine equation for the vapor pressures of pure benzene and pure chlorobenzene.

### Tasks:
1. Use these VLE (Vapor-Liquid Equilibrium) data to obtain appropriate values for the parameters in the van Laar and Margules models.
2. Prepare Pxy diagrams showing both the data and the fits from part (1).
3. Use your results from parts (1) and (2) to determine the most suitable model and use that model to prepare a Txy diagram at 50 mm Hg. (Assume that the coefficients in the models do not depend on temperature.)
Transcribed Image Text:The following experimentally determined data are available for the vapor-liquid equilibrium of benzene (1) / chlorobenzene (2) at 26.0°C: | p/mmHg | x₁ | y₁ | |--------|--------|--------| | 17.78 | 0.0554 | 0.3462 | | 23.86 | 0.1168 | 0.5382 | | 33.67 | 0.2196 | 0.7111 | | 52.90 | 0.4304 | 0.8651 | | 70.14 | 0.6281 | 0.9320 | | 76.18 | 0.8154 | 0.9684 | | 95.07 | 0.9508 | 0.9912 | *Note:* You may use the data in Table B.2 of Smith, et al. for the parameters in the Antoine equation for the vapor pressures of pure benzene and pure chlorobenzene. ### Tasks: 1. Use these VLE (Vapor-Liquid Equilibrium) data to obtain appropriate values for the parameters in the van Laar and Margules models. 2. Prepare Pxy diagrams showing both the data and the fits from part (1). 3. Use your results from parts (1) and (2) to determine the most suitable model and use that model to prepare a Txy diagram at 50 mm Hg. (Assume that the coefficients in the models do not depend on temperature.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 14 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Part b and c!!!

**Table B.2: Constants for the Antoine Equation for Vapor Pressures of Pure Species**

The Antoine equation is used to calculate the vapor pressures of pure substances. It is given by:

\[ \ln P_{sat} / \text{kPa} = A - \frac{B}{t/^\circ C + C} \]

where:
- \( P_{sat} \) is the vapor pressure in kPa.
- \( A, B, \) and \( C \) are empirical constants specific to each substance.
- \( t \) is the temperature in degrees Celsius.

The table provides these constants for various substances, along with their latent heat of vaporization at the normal boiling point (\( \Delta H_n \)) and the normal boiling point (\( t_n \)).

| Name                     | Formula  | A†      | B      | C      | Temp. Range °C | \( \Delta H_n \) kJ/mol | \( t_n \)°C |
|--------------------------|----------|---------|-------|--------|----------------|------------------|-------|
| Acetone                  | C₃H₆O   | 14.3145 | 2756.22 | 228.060 | -26—77    | 29.10       | 56.2  |
| Acetic acid              | C₂H₄O₂  | 15.0177 | 3580.80 | 224.650 | 24—142    | 23.70       | 117.9 |
| Acetonitrile*            | C₂H₃N    | 14.8950 | 3413.10 | 250.523 | -27—81    | 30.19       | 81.6  |
| Benzene                  | C₆H₆     | 13.7819 | 2726.81 | 217.572 | 6—104     | 30.72       | 80.0  |
| *iso*-Butane              | C₄H₁₀   | 13.8254 | 2181.79 | 248.870 | -83—7     | 21.30       | -11.9 |
| *n*-Butane                | C₄H₁₀   | 13.6608 | 2154
Transcribed Image Text:**Table B.2: Constants for the Antoine Equation for Vapor Pressures of Pure Species** The Antoine equation is used to calculate the vapor pressures of pure substances. It is given by: \[ \ln P_{sat} / \text{kPa} = A - \frac{B}{t/^\circ C + C} \] where: - \( P_{sat} \) is the vapor pressure in kPa. - \( A, B, \) and \( C \) are empirical constants specific to each substance. - \( t \) is the temperature in degrees Celsius. The table provides these constants for various substances, along with their latent heat of vaporization at the normal boiling point (\( \Delta H_n \)) and the normal boiling point (\( t_n \)). | Name | Formula | A† | B | C | Temp. Range °C | \( \Delta H_n \) kJ/mol | \( t_n \)°C | |--------------------------|----------|---------|-------|--------|----------------|------------------|-------| | Acetone | C₃H₆O | 14.3145 | 2756.22 | 228.060 | -26—77 | 29.10 | 56.2 | | Acetic acid | C₂H₄O₂ | 15.0177 | 3580.80 | 224.650 | 24—142 | 23.70 | 117.9 | | Acetonitrile* | C₂H₃N | 14.8950 | 3413.10 | 250.523 | -27—81 | 30.19 | 81.6 | | Benzene | C₆H₆ | 13.7819 | 2726.81 | 217.572 | 6—104 | 30.72 | 80.0 | | *iso*-Butane | C₄H₁₀ | 13.8254 | 2181.79 | 248.870 | -83—7 | 21.30 | -11.9 | | *n*-Butane | C₄H₁₀ | 13.6608 | 2154
The following experimentally determined data are available for the vapor-liquid equilibrium of benzene (1)/chlorobenzene (2) at 26.0°C:

| p/mmHg | x₁    | y₁    |
|--------|-------|-------|
| 17.78  | 0.0554| 0.3462|
| 23.86  | 0.1168| 0.5382|
| 33.67  | 0.2196| 0.7111|
| 52.90  | 0.4304| 0.8651|
| 70.14  | 0.6281| 0.9320|
| 76.18  | 0.8154| 0.9684|
| 95.07  | 0.9508| 0.9912|

You may use the data in Table B.2 of Smith, et al. for the parameters in the Antoine equation for the vapor pressures of pure benzene and pure chlorobenzene.

1. Use these VLE data to obtain appropriate values for the parameters in the van Laar and Margules models.
2. Prepare Pxy diagrams showing both the data and the fits from part (1).
3. Use your results from parts (1) and (2) to determine the most suitable model and use that model to prepare a Txy diagram at 50 mm Hg. (Assume that the coefficients in the models do not depend on temperature.)
Transcribed Image Text:The following experimentally determined data are available for the vapor-liquid equilibrium of benzene (1)/chlorobenzene (2) at 26.0°C: | p/mmHg | x₁ | y₁ | |--------|-------|-------| | 17.78 | 0.0554| 0.3462| | 23.86 | 0.1168| 0.5382| | 33.67 | 0.2196| 0.7111| | 52.90 | 0.4304| 0.8651| | 70.14 | 0.6281| 0.9320| | 76.18 | 0.8154| 0.9684| | 95.07 | 0.9508| 0.9912| You may use the data in Table B.2 of Smith, et al. for the parameters in the Antoine equation for the vapor pressures of pure benzene and pure chlorobenzene. 1. Use these VLE data to obtain appropriate values for the parameters in the van Laar and Margules models. 2. Prepare Pxy diagrams showing both the data and the fits from part (1). 3. Use your results from parts (1) and (2) to determine the most suitable model and use that model to prepare a Txy diagram at 50 mm Hg. (Assume that the coefficients in the models do not depend on temperature.)
Solution
Bartleby Expert
SEE SOLUTION
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The