The following data are derived from the Monthly Vital Statistics Report (October 1999) issued by the National Center for Health Statistics [10]. These data are pertinent to livebirths only. Suppose that infants are classified as low birthweight if they have a birthweight <2500 g and as normal birthweight if they have a birthweight ≥2500 g. Suppose that infants are also classified by length of gestation in the following five categories: <28 weeks, 28–31 weeks, 32–35 weeks, 36 weeks, and ≥37 weeks. Assume the probabilities of the different periods of gestation are as given in Table 3.8. Also assume that the probability of low birthweight is .949 given a gestation of <28 weeks, .702 given a gestation of 28–31 weeks, .434 given a gestation of 32–35 weeks, .201 given a gestation of 36 weeks, and .029 given a gestation of ≥37 weeks.,   1 What is the probability of having a low birthweight infant?  2 Show that the events {length of gestation ≤ 31 weeks} and {low birthweight} are not independent. 3 What is the probability of having a length of gestation ≤36 eeks given that an infant is low birthweight?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

Obstetrics

The following data are derived from the Monthly Vital Statistics Report (October 1999) issued by the National Center for Health Statistics [10]. These data are pertinent to livebirths only.

Suppose that infants are classified as low birthweight if they have a birthweight <2500 g and as normal birthweight if they have a birthweight ≥2500 g. Suppose that infants are also classified by length of gestation in the following five categories: <28 weeks, 28–31 weeks, 32–35 weeks, 36 weeks, and ≥37 weeks. Assume the probabilities of the different periods of gestation are as given in Table 3.8. Also assume that the probability of low birthweight is .949 given a gestation of <28 weeks, .702 given a gestation of 28–31 weeks, .434 given a gestation of 32–35 weeks, .201 given a gestation of 36 weeks, and .029 given a gestation of ≥37 weeks.,

 

1 What is the probability of having a low birthweight infant? 

2 Show that the events {length of gestation ≤ 31 weeks} and {low birthweight} are not independent.

3 What is the probability of having a length of gestation ≤36 eeks given that an infant is low birthweight? 

TABLE 3.8 Distribution of length of gestation
Length of gestation
Probability
<28 weeks
.007
28-31 weeks
.012
32-35 weeks
.050
36 weeks
.037
237 weeks
.893
Transcribed Image Text:TABLE 3.8 Distribution of length of gestation Length of gestation Probability <28 weeks .007 28-31 weeks .012 32-35 weeks .050 36 weeks .037 237 weeks .893
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman