The following code plots the ground coverage of an satellite orbiting the earth. Can you give me the code to figure out how much time does the building have coverage from the satellite everyday? Please make sure the code gives a reasonable answer   % At the initial time, the true anomaly is equal to zero, % and the Greenwich meridian points to the Aries point. % Initial conditions omega_earth = rad2deg(7.2921151467e-5); % deg/s semi_major_axis = 3096.7363; % km eccentricity = 0.74; inclination = 63.4349; % degrees RAAN = -86.915798; % degrees argument_of_perigee = 270; % degrees n_points = 100; % number of points cone_angle = 10; % degrees % Building coordinates building_latitude = 40.43094; % degrees building_longitude = -86.915798; % degrees % Calculate time vector over one orbital period orbital_period = 360 / omega_earth; time_vector = linspace(0, orbital_period, n_points); % Preallocate arrays for orbital elements true_anomaly = zeros(1, n_points); longitude = zeros(1, n_points); latitude = zeros(1, n_points); % Calculate orbital elements at each time step for i = 1:n_points     true_anomaly(i) = 2 * atand(sqrt((1 + eccentricity) / (1 - eccentricity)) * tand(0.5 * sqrt(1 - eccentricity) * omega_earth * time_vector(i)));          radius = semi_major_axis * (1 - eccentricity^2) / (1 + eccentricity * cosd(true_anomaly(i)));          x_orbital_plane = radius * cosd(true_anomaly(i));     y_orbital_plane = radius * sind(true_anomaly(i));          % Transformation to ECI coordinates     x_eci = x_orbital_plane * cosd(argument_of_perigee) - y_orbital_plane * sind(argument_of_perigee);     y_eci = x_orbital_plane * sind(argument_of_perigee) + y_orbital_plane * cosd(argument_of_perigee);     z_eci = y_orbital_plane * sind(inclination);          % Calculate longitude and latitude     longitude(i) = atan2d(y_eci, x_eci);     latitude(i) = asind(z_eci / radius); end % Plot the ground-track figure; plot(longitude, latitude, 'b-', 'LineWidth', 1.5); hold on; % Plot the building location plot(building_longitude, building_latitude, 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r'); % Set axis labels and title xlabel('Longitude (degrees)'); ylabel('Latitude (degrees)'); title('Ground-Track of the Orbit'); % Display legend legend('Ground-Track', 'Building Location'); % Set grid grid on; % Show the plot hold off;

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

The following code plots the ground coverage of an satellite orbiting the earth. Can you give me the code to figure out how much time does the building have coverage from the satellite everyday? Please make sure the code gives a reasonable answer

 

% At the initial time, the true anomaly is equal to zero,
% and the Greenwich meridian points to the Aries point.


% Initial conditions
omega_earth = rad2deg(7.2921151467e-5); % deg/s
semi_major_axis = 3096.7363; % km
eccentricity = 0.74;
inclination = 63.4349; % degrees
RAAN = -86.915798; % degrees
argument_of_perigee = 270; % degrees
n_points = 100; % number of points
cone_angle = 10; % degrees

% Building coordinates
building_latitude = 40.43094; % degrees
building_longitude = -86.915798; % degrees

% Calculate time vector over one orbital period
orbital_period = 360 / omega_earth;
time_vector = linspace(0, orbital_period, n_points);

% Preallocate arrays for orbital elements
true_anomaly = zeros(1, n_points);
longitude = zeros(1, n_points);
latitude = zeros(1, n_points);

% Calculate orbital elements at each time step
for i = 1:n_points
    true_anomaly(i) = 2 * atand(sqrt((1 + eccentricity) / (1 - eccentricity)) * tand(0.5 * sqrt(1 - eccentricity) * omega_earth * time_vector(i)));
    
    radius = semi_major_axis * (1 - eccentricity^2) / (1 + eccentricity * cosd(true_anomaly(i)));
    
    x_orbital_plane = radius * cosd(true_anomaly(i));
    y_orbital_plane = radius * sind(true_anomaly(i));
    
    % Transformation to ECI coordinates
    x_eci = x_orbital_plane * cosd(argument_of_perigee) - y_orbital_plane * sind(argument_of_perigee);
    y_eci = x_orbital_plane * sind(argument_of_perigee) + y_orbital_plane * cosd(argument_of_perigee);
    z_eci = y_orbital_plane * sind(inclination);
    
    % Calculate longitude and latitude
    longitude(i) = atan2d(y_eci, x_eci);
    latitude(i) = asind(z_eci / radius);
end

% Plot the ground-track
figure;
plot(longitude, latitude, 'b-', 'LineWidth', 1.5);
hold on;

% Plot the building location
plot(building_longitude, building_latitude, 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');

% Set axis labels and title
xlabel('Longitude (degrees)');
ylabel('Latitude (degrees)');
title('Ground-Track of the Orbit');

% Display legend
legend('Ground-Track', 'Building Location');

% Set grid
grid on;

% Show the plot
hold off;

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Linux
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education