The figure shows a photo of a swing ride at an amusement park. The structure consists of a horizontal, rotating, circular platform of diameter D from which seats of mass m are suspended at the end of massless chains of length d. When the system rotates at constant speed, the chains swing outward and make an angle ? with the vertical. Consider such a ride with the following parameters: D = 7.00 m, d = 2.50 m, m = 9.9 kg, and ? = 29.0°. (a) What is the speed of each seat (in m/s)? (b) Draw a diagram of forces acting on a 40.0-kg child riding in a seat. (c) Find the tension in the chain (in N).
The figure shows a photo of a swing ride at an amusement park. The structure consists of a horizontal, rotating, circular platform of diameter D from which seats of mass m are suspended at the end of massless chains of length d. When the system rotates at constant speed, the chains swing outward and make an angle ? with the vertical. Consider such a ride with the following parameters: D = 7.00 m, d = 2.50 m, m = 9.9 kg, and ? = 29.0°. (a) What is the speed of each seat (in m/s)? (b) Draw a diagram of forces acting on a 40.0-kg child riding in a seat. (c) Find the tension in the chain (in N).
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Topic Video
Question
The figure shows a photo of a swing ride at an amusement park. The structure consists of a horizontal, rotating, circular platform of diameter D from which seats of mass m are suspended at the end of massless chains of length d. When the system rotates at constant speed, the chains swing outward and make an angle ? with the vertical. Consider such a ride with the following parameters: D = 7.00 m, d = 2.50 m, m = 9.9 kg, and ? = 29.0°.
(a) What is the speed of each seat (in m/s)?
(b) Draw a diagram of forces acting on a 40.0-kg child riding in a seat.
(c) Find the tension in the chain (in N).
What If? The chains holding each seat can withstand a maximum total tension of 700 N.
(d) What is the angle that the chains make with the vertical (in degrees) when they have this tension?
(e) What is the maximum angular speed (in rad/s) with which the ride can rotate?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON