The figure is a bird's eye view of a horizontal disc, which can rotate about a vertical xis through its center. The radius of the disc is 0.5 meter and its rotational inertia about he rotation axis is 10-3 kg.m². The torque due to friction in the rotation axis is constant, with magnitude 0.70 Nm. A constant horizontal force is continuously applied angentially to the rim of the disc. The disc is initially at rest. The angular displacement of the disc is 4.0 rad and its angular speed is 90 rad/s at time T. There is no air drag. Calculate the magnitude of the applied force.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
(You cannot use Newton's second law or kinematics.)
O
Applied force
The figure is a bird's eye view of a horizontal disc, which can rotate about a vertical
axis through its center. The radius of the disc is 0.5 meter and its rotational inertia about
the rotation axis is 10-3 kg.m². The torque due to friction in the rotation axis is constant,
with magnitude 0.70 Nm. A constant horizontal force is continuously applied
tangentially to the rim of the disc. The disc is initially at rest. The angular displacement
of the disc is 4.0 rad and its angular speed is 90 rad/s at time T. There is no air drag.
Calculate the magnitude of the applied force.
(You cannot use Newton's second law or kinematics.)
Transcribed Image Text:(You cannot use Newton's second law or kinematics.) O Applied force The figure is a bird's eye view of a horizontal disc, which can rotate about a vertical axis through its center. The radius of the disc is 0.5 meter and its rotational inertia about the rotation axis is 10-3 kg.m². The torque due to friction in the rotation axis is constant, with magnitude 0.70 Nm. A constant horizontal force is continuously applied tangentially to the rim of the disc. The disc is initially at rest. The angular displacement of the disc is 4.0 rad and its angular speed is 90 rad/s at time T. There is no air drag. Calculate the magnitude of the applied force. (You cannot use Newton's second law or kinematics.)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON