The figure below shows, at left, a solid flywheel of radius R = 0.600 m and mass 50.0 kg. Mounted directly to it and coaxial with it is a pulley with a much smaller mass and a radius of r = 0.230 m. The flywheel and pulley assembly are on a frictionless axle. A belt is wrapped around the pulley and connected to an electric motor as shown on the right. The turning motor gives the flywheel and pulley a clockwise angular acceleration of 1.67 rad/s2. The tension T, in the upper (taut) segment of the belt is 175 N. (a) What is the tension (in N) in the lower (slack) segment of the belt? (b) What If? You replace the belt with a different one (one slightly longer and looser, but still tight enough that it does not sag). You again turn on the motor so that the flywheel accelerates clockwise. The upper segment of the belt once again has a tension of 175 N, but now the tension in the lower belt is exactly zero. What is the magnitude of the angular acceleration (in rad/s²)?

icon
Related questions
Question
The figure below shows, at left, a solid flywheel of radius R = 0.600 m and mass 50.0 kg.
R
Mounted directly to it and coaxial with it is a pulley with a much smaller mass and a radius of r = 0.230 m. The flywheel and pulley assembly are on a frictionless
axle. A belt is wrapped around the pulley and connected to an electric motor as shown on the right. The turning motor gives the flywheel and pulley a clockwise
angular
ration of 1.67 rad/s2. The tension T, in the upper (taut) segment
the belt is 175 N.
(a) What is the tension (in N) in the lower (slack) segment of the belt?
(b) What If? You replace the belt with a different one (one slightly longer and looser, but still tight enough that it does not sag). You again turn on the motor so
that the flywheel accelerates clockwise. The upper segment of the belt once again has a tension of 175 N, but now the tension in the lower belt is exactly
zero. What is the magnitude of the angular acceleration (in rad/s?)?
rad/s2
Transcribed Image Text:The figure below shows, at left, a solid flywheel of radius R = 0.600 m and mass 50.0 kg. R Mounted directly to it and coaxial with it is a pulley with a much smaller mass and a radius of r = 0.230 m. The flywheel and pulley assembly are on a frictionless axle. A belt is wrapped around the pulley and connected to an electric motor as shown on the right. The turning motor gives the flywheel and pulley a clockwise angular ration of 1.67 rad/s2. The tension T, in the upper (taut) segment the belt is 175 N. (a) What is the tension (in N) in the lower (slack) segment of the belt? (b) What If? You replace the belt with a different one (one slightly longer and looser, but still tight enough that it does not sag). You again turn on the motor so that the flywheel accelerates clockwise. The upper segment of the belt once again has a tension of 175 N, but now the tension in the lower belt is exactly zero. What is the magnitude of the angular acceleration (in rad/s?)? rad/s2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS