The figure above shows the percentage differential relay used for the protection of an alternator winding. The relay has a minimum pick up current of 0.2 ampere and has a percentage slope of 10%. A high resistance ground fault occurs near the grounded neutral end of the generator winding with the current distribution as shown. Assume a CT ratio of 400: 5; determine whether the relay will operate.
The figure above shows the percentage differential relay used for the protection of an alternator winding. The relay has a minimum pick up current of 0.2 ampere and has a percentage slope of 10%. A high resistance ground fault occurs near the grounded neutral end of the generator winding with the current distribution as shown. Assume a CT ratio of 400: 5; determine whether the relay will operate.
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter12: Power System Controls
Section: Chapter Questions
Problem 12.4P
Related questions
Question

Transcribed Image Text:The figure above shows the percentage differential relay used for the
protection of an alternator winding. The relay has a minimum pick up current of 0.2 ampere
and has a percentage slope of 10%. A high resistance ground fault occurs near the grounded
neutral end of the generator winding with the current distribution as shown. Assume a CT
ratio of 400: 5; determine whether the relay will operate.

Transcribed Image Text:360 + j 0.0
৭০০০০০০০০০০
320 + j 0.0
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning

Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning