The field is F,, the splitting field of x²-x, over F₂. Now x' - x = x(x - 1)(x² + x +...+x+1) = x(x − 1)(x-2)(x² + 1)(x² − x − 1)(x² + x - 1) as a product of irreducible polynomials over Z₁. how do we this If a is a root of x² +1 over Z₁, then {1, a) is an F-basis of F,.quest
The field is F,, the splitting field of x²-x, over F₂. Now x' - x = x(x - 1)(x² + x +...+x+1) = x(x − 1)(x-2)(x² + 1)(x² − x − 1)(x² + x - 1) as a product of irreducible polynomials over Z₁. how do we this If a is a root of x² +1 over Z₁, then {1, a) is an F-basis of F,.quest
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![i)
ii)
i)
ii)
Construct a field with 9 elements.
Determine the irreducible polynomial satisfied by each element of
the field in (i).
The field is F,, the splitting field of x2-x, over F₂.
Now x' - x = x(x-1)(x² + x +...+x+1)
= x(x − 1)(x-2)(x² +1)(x² − x − 1)(x²+x-1) as a product of
irreducible polynomials over Z,. how do we
this
get
If œ is a root of x² +1 over Z3, then {1, α) is an F-basis of F₂. lequest
So F, = {0, 1, 2, α, 2a, 1+ α, 1+2a, 2+α, 2+2α).
expan
this step
0, 1, 2 satisfy x,x-1, x-2, respectively.
a, 2a satisfy x² +1,
1+ α, 1+ 2a satisfy x²+x-1
2+α, 2+2a satisfy x²-x-1.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe15b7304-cc73-4505-92c3-23aa2fda4f71%2Fe6b3e5ab-66d5-4f87-a3f1-a9c8cc1eb21b%2Fzkr5wgt_processed.png&w=3840&q=75)
Transcribed Image Text:i)
ii)
i)
ii)
Construct a field with 9 elements.
Determine the irreducible polynomial satisfied by each element of
the field in (i).
The field is F,, the splitting field of x2-x, over F₂.
Now x' - x = x(x-1)(x² + x +...+x+1)
= x(x − 1)(x-2)(x² +1)(x² − x − 1)(x²+x-1) as a product of
irreducible polynomials over Z,. how do we
this
get
If œ is a root of x² +1 over Z3, then {1, α) is an F-basis of F₂. lequest
So F, = {0, 1, 2, α, 2a, 1+ α, 1+2a, 2+α, 2+2α).
expan
this step
0, 1, 2 satisfy x,x-1, x-2, respectively.
a, 2a satisfy x² +1,
1+ α, 1+ 2a satisfy x²+x-1
2+α, 2+2a satisfy x²-x-1.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)