Let f(x) = x' + 2x + 4 and g(x) - 3x + 2 in Z,[x]. Then, upon dividing f(x) by glx), we get 7- The quotient polynomial is: a) 1+ 2x + 2x. b) c) 2+3x + 2x. d) None.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
part 7 8
Let f(x) - x' + 2x + 4 and g(x) - 3x + 2 in Z,x]. Then, upon dividing f(x) by
g(x), we get
7- The quotient polynomial is:
a) 1+ 2x + 2x.
b) 2-2
27
c) 2+ 3x + 2x².
d) None.
O a)
O b)
O c)
O d)
8- The remainder polynomial is:
a)
b) 8.
c) 0.
d) 2.
O a)
O b)
O c)
9. The polynomial 2x + 1 has a multiplicative inverse in Z[x] equals to:
a)
b) 1+ 2x
c)x +1
d) None
O a)
O b)
10-If p is a prime number, then in Z[x] the polynomial x P -1 – 1 =
a) (x- 1) (x + 2) (x - 3)... (x+ p- 1).
b) (x - 1) (r - 1) (x² – 1)... (x"- – 1).
c) (x- 1) (r 2) (x- 3)... (x- p+1).
d) (x- 1) (r- 2) (x – 3)... (x -p-1).
O b)
O c)
O d)
Transcribed Image Text:Let f(x) - x' + 2x + 4 and g(x) - 3x + 2 in Z,x]. Then, upon dividing f(x) by g(x), we get 7- The quotient polynomial is: a) 1+ 2x + 2x. b) 2-2 27 c) 2+ 3x + 2x². d) None. O a) O b) O c) O d) 8- The remainder polynomial is: a) b) 8. c) 0. d) 2. O a) O b) O c) 9. The polynomial 2x + 1 has a multiplicative inverse in Z[x] equals to: a) b) 1+ 2x c)x +1 d) None O a) O b) 10-If p is a prime number, then in Z[x] the polynomial x P -1 – 1 = a) (x- 1) (x + 2) (x - 3)... (x+ p- 1). b) (x - 1) (r - 1) (x² – 1)... (x"- – 1). c) (x- 1) (r 2) (x- 3)... (x- p+1). d) (x- 1) (r- 2) (x – 3)... (x -p-1). O b) O c) O d)
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,