The density of water is 1000 kg/m³, and it has a viscosity of 0.001 kg/(m*s). What is the Reynolds number for a flow with speed = 1 m/s and depth = 2 m?
The density of water is 1000 kg/m³, and it has a viscosity of 0.001 kg/(m*s). What is the Reynolds number for a flow with speed = 1 m/s and depth = 2 m?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
![**Problem Statement:**
The density of water is 1000 kg/m³, and it has a viscosity of 0.001 kg/(m·s). What is the Reynolds number for a flow with speed = 1 m/s and depth = 2 m?
**Solution Explanation:**
To determine the Reynolds number (\(Re\)) for the given flow, we will use the formula:
\[ Re = \frac{\rho \cdot V \cdot L}{\mu} \]
Where:
- \( \rho \) = density of the fluid
- \( V \) = velocity of the flow
- \( L \) = characteristic length (in this case, the depth)
- \( \mu \) = dynamic viscosity of the fluid
**Given:**
- \( \rho = 1000 \, \text{kg/m}^3 \)
- \( \mu = 0.001 \, \text{kg/(m·s)} \)
- \( V = 1 \, \text{m/s} \)
- \( L = 2 \, \text{m} \)
**Substitute the values into the formula:**
\[ Re = \frac{1000 \, \text{kg/m}^3 \times 1 \, \text{m/s} \times 2 \, \text{m}}{0.001 \, \text{kg/(m·s)}} \]
\[ Re = \frac{2000 \, \text{kg·m/s}^2}{0.001 \, \text{kg/(m·s)}} \]
\[ Re = 2,000,000 \]
Therefore, the Reynolds number for the given flow is 2,000,000.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe259be8c-12b5-40c3-b3d9-8065c10d29cd%2F60988827-04e8-474d-bbf6-84a6e24da0e2%2Fqn2xfh6j_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
The density of water is 1000 kg/m³, and it has a viscosity of 0.001 kg/(m·s). What is the Reynolds number for a flow with speed = 1 m/s and depth = 2 m?
**Solution Explanation:**
To determine the Reynolds number (\(Re\)) for the given flow, we will use the formula:
\[ Re = \frac{\rho \cdot V \cdot L}{\mu} \]
Where:
- \( \rho \) = density of the fluid
- \( V \) = velocity of the flow
- \( L \) = characteristic length (in this case, the depth)
- \( \mu \) = dynamic viscosity of the fluid
**Given:**
- \( \rho = 1000 \, \text{kg/m}^3 \)
- \( \mu = 0.001 \, \text{kg/(m·s)} \)
- \( V = 1 \, \text{m/s} \)
- \( L = 2 \, \text{m} \)
**Substitute the values into the formula:**
\[ Re = \frac{1000 \, \text{kg/m}^3 \times 1 \, \text{m/s} \times 2 \, \text{m}}{0.001 \, \text{kg/(m·s)}} \]
\[ Re = \frac{2000 \, \text{kg·m/s}^2}{0.001 \, \text{kg/(m·s)}} \]
\[ Re = 2,000,000 \]
Therefore, the Reynolds number for the given flow is 2,000,000.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON