The contraption shown below consists of two masses connected by a string of negligible mass through a massless pulley. A spring with constant k is placed so that its equilibrium position is located a distance h below the bottom of mass m2. There is no friction either in the pulley or between the surfaces of the masses and the platform. When the two masses m¡ and m2 are released from rest, mass m2 begins falling and pulls mass m¡ up the ramp. a) Find an expression for the maximum compression of the spring d caused by mass m2 when it hits the spring. Your answer should be in terms of the m2 variables given (and g). b) On the axes below, make sketches of the kinetic energy (K), gravitational potential energy (Ugav), and elastic potential energy (Ua) of the system as a function of the height of m2, where y = 0 is defined as the point where mass m2 collides with the spring. Note that the left- hand edge of the axis is the height h, and the right-hand edge of the axis is the height -d. -d height of mass m, above the spring -d height of mass m, above the spring h height of mass m, above the spring MWW

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The contraption shown below consists of two masses connected by a string of negligible mass
through a massless pulley. A spring with constant k is placed so that its equilibrium position is
located a distance h below the bottom of mass m2. There is no friction either in the pulley or
between the surfaces of the masses and the platform. When the two masses m¡ and m2 are
released from rest, mass m2 begins falling and pulls mass m¡ up the ramp.
a) Find an expression for the
maximum compression of the
spring d caused by mass m2
when it hits the spring. Your
answer should be in terms of the
m2
variables given (and g).
b) On the axes below, make sketches of the kinetic energy (K), gravitational potential energy
(Ugav), and elastic potential energy (Ua) of the system as a function of the height of m2,
where y = 0 is defined as the point where mass m2 collides with the spring. Note that the left-
hand edge of the axis is the height h, and the right-hand edge of the axis is the height -d.
-d
height of mass m, above the spring
-d
height of mass m, above the spring
h
height of mass m, above the spring
MWW
Transcribed Image Text:The contraption shown below consists of two masses connected by a string of negligible mass through a massless pulley. A spring with constant k is placed so that its equilibrium position is located a distance h below the bottom of mass m2. There is no friction either in the pulley or between the surfaces of the masses and the platform. When the two masses m¡ and m2 are released from rest, mass m2 begins falling and pulls mass m¡ up the ramp. a) Find an expression for the maximum compression of the spring d caused by mass m2 when it hits the spring. Your answer should be in terms of the m2 variables given (and g). b) On the axes below, make sketches of the kinetic energy (K), gravitational potential energy (Ugav), and elastic potential energy (Ua) of the system as a function of the height of m2, where y = 0 is defined as the point where mass m2 collides with the spring. Note that the left- hand edge of the axis is the height h, and the right-hand edge of the axis is the height -d. -d height of mass m, above the spring -d height of mass m, above the spring h height of mass m, above the spring MWW
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY