The confidence interval is reported as follows: Lower 95% CI < p < Upper 95% CI For this question you will be calculating the confidence interval but only reporting the Lower 95% CI using the Agresti-Coull Method. ((you'll need to know the whole 95% CI for a future question) Do NOT use calculations from previous questions, this is a new scenario. In the Invisible Gorilla Experiment, 14 students were watching the video, only 8 noticed the gorilla. Calculate the 95% CI using the Agresti-Coull method, but only report the Lower 95% CI. Report your answer to 3 decimals. In the Invisible Gorilla experiment, the assumption is that most observers in this experiment would notice a person in a Gorilla suit walk into the middle of the ball tossers, beat their chest, and walk out. In our hypothetical example. H, = The relative frequency of successes in the population is p= 0.75 (ie, most observers) H₂ = The relative frequency of success in the population is something other than p = 0.75 (p = 0.75) In looking at your calculated 95% confidence interval (assuming your answer is correct), does the value of 0.75 fall inside or outside of the interval? Would you then reject or fail to reject the null hypothesis? inside O outside O reject O fail to reject

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
The confidence interval is reported as follows:
Lower 95% CI < p < Upper 95% CI
For this question you will be calculating the confidence interval but only reporting the Lower 95% CI using the Agresti-Coull Method. ((you'll need to know the whole 95% CI for a future question)
Do NOT use calculations from previous questions, this is a new scenario.
In the Invisible Gorilla Experiment, 14 students were watching the video, only 8 noticed the gorilla. Calculate the 95% CI using the Agresti-Coull method, but only report the Lower 95% CI.
Report your answer to 3 decimals.
In the Invisible Gorilla experiment, the assumption that most observers in this experiment would notice a person in a Gorilla suit walk into the middle of the ball tossers, beat their chest, and walk out.
In our hypothetical example,
H₁ = The relative frequency of successes in the population is p = 0.75 (ie, most observers)
H₂ = The relative frequency of success in the population is something other than p = 0.75 (p = 0.75)
In looking at your calculated 95% confidence interval (assuming your answer is correct), does the value of 0.75 fall inside or outside of the interval?
Would you then reject or fail to reject the null hypothesis?
O inside
outside
reject
fail to reject
Transcribed Image Text:The confidence interval is reported as follows: Lower 95% CI < p < Upper 95% CI For this question you will be calculating the confidence interval but only reporting the Lower 95% CI using the Agresti-Coull Method. ((you'll need to know the whole 95% CI for a future question) Do NOT use calculations from previous questions, this is a new scenario. In the Invisible Gorilla Experiment, 14 students were watching the video, only 8 noticed the gorilla. Calculate the 95% CI using the Agresti-Coull method, but only report the Lower 95% CI. Report your answer to 3 decimals. In the Invisible Gorilla experiment, the assumption that most observers in this experiment would notice a person in a Gorilla suit walk into the middle of the ball tossers, beat their chest, and walk out. In our hypothetical example, H₁ = The relative frequency of successes in the population is p = 0.75 (ie, most observers) H₂ = The relative frequency of success in the population is something other than p = 0.75 (p = 0.75) In looking at your calculated 95% confidence interval (assuming your answer is correct), does the value of 0.75 fall inside or outside of the interval? Would you then reject or fail to reject the null hypothesis? O inside outside reject fail to reject
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman