The condenser of a large thermal power plant is a body-tube type heat exchanger consisting of a single body and 30000 pipes with two passes each. The pipes are thin-walled with an inner diameter of 25 mm, and steam condenses on the outer surfaces of the pipes with a convection coefficient of 11000 W / m2.K. The heat transfer required by the heat exchanger is 2000 MW, and it is provided by the flow of water through the pipes at a flow rate of 30000 kg / h. Water enters at 20 ° C, steam condenses at 50 ° C. Calculate the temperature of the cooling water leaving the condenser? Determine the required pipe length per pass? The properties of water at Tort = 300 K; Cp = 4180 j / kgK, μ = 855 × 10--6 Ns / m2, k = 0.613 W / mK, Pr = 5.83.
Heat Exchangers
Heat exchangers are the types of equipment that are primarily employed to transfer the thermal energy from one fluid to another, provided that one of the fluids should be at a higher thermal energy content than the other fluid.
Heat Exchanger
The heat exchanger is a combination of two words ''Heat'' and ''Exchanger''. It is a mechanical device that is used to exchange heat energy between two fluids.
The condenser of a large thermal power plant is a body-tube type heat exchanger consisting of a single body and 30000 pipes with two passes each. The pipes are thin-walled with an inner diameter of 25 mm, and steam condenses on the outer surfaces of the pipes with a convection coefficient of 11000 W / m2.K. The heat transfer required by the heat exchanger is 2000 MW, and it is provided by the flow of water through the pipes at a flow rate of 30000 kg / h. Water enters at 20 ° C, steam condenses at 50 ° C. Calculate the temperature of the cooling water leaving the condenser? Determine the required pipe length per pass? The properties of water at Tort = 300 K; Cp = 4180 j / kgK, μ = 855 × 10--6 Ns / m2, k = 0.613 W / mK, Pr = 5.83.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps