The computer output (below) shows a relationship where Y = Sale price for a home, X1 = living area, and X2 = # of bedrooms, X3 = # of bathrooms.  We would like to predict Price (Y).  There are three 2-variable regression relationships shown and one 4-variable multiple regression relationship shown.   Regression Equation Price = 171032 + 120420 Bathrooms Model Summary S R-sq R-sq(adj) R-sq(pred) 267458 14.27% 14.17% 13.82%   Regression Equation Price = 200274 + 113.68 Living Area Model Summary S R-sq R-sq(adj) R-sq(pred) 268449 13.54% 13.44% 13.10%   Regression Equation Price = 338975 + 40234 Bedrooms Model Summary S R-sq R-sq(adj) R-sq(pred) 286741 1.35% 1.24% 0.92%   **Multiple regression output is below: Regression Equation Price = 275641 + 84.7 Living Area - 66797 Bedrooms + 93925 Bathrooms Model Summary S R-sq R-sq(adj) R-sq(pred) 260320 18.97% 18.69% 18.21% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant 275641 40655 6.78 0.000     Final multiple regression relationship: Coefficients Term                   Coef      SE Coef               T-Value               P-Value Constant            275641 40655                 6.78                    0.000    Living Area         84.7      13.4                     6.33                    0.000    Bedrooms          -66797  13089                 -5.10                   0.000 Bathrooms         93925   13660                 6.88                    0.000      Model Summary S                          R-sq      R-sq(adj)            R-sq(pred) 260320               18.97% 18.69%               18.21%  What is the independent variable that has the most influence in predicting Price?  Explain your reasoning.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

The computer output (below) shows a relationship where Y = Sale price for a home, X1 = living area, and X2 = # of bedrooms, X3 = # of bathrooms.  We would like to predict Price (Y).  There are three 2-variable regression relationships shown and one 4-variable multiple regression relationship shown.  

Regression Equation

Price

=

171032 + 120420 Bathrooms

Model Summary

S

R-sq

R-sq(adj)

R-sq(pred)

267458

14.27%

14.17%

13.82%

 

Regression Equation

Price

=

200274 + 113.68 Living Area

Model Summary

S

R-sq

R-sq(adj)

R-sq(pred)

268449

13.54%

13.44%

13.10%

 

Regression Equation

Price

=

338975 + 40234 Bedrooms

Model Summary

S

R-sq

R-sq(adj)

R-sq(pred)

286741

1.35%

1.24%

0.92%

 

**Multiple regression output is below:

Regression Equation

Price

=

275641 + 84.7 Living Area - 66797 Bedrooms + 93925 Bathrooms

Model Summary

S

R-sq

R-sq(adj)

R-sq(pred)

260320

18.97%

18.69%

18.21%

Coefficients

Term

Coef

SE Coef

T-Value

P-Value

VIF

Constant

275641

40655

6.78

0.000

 

 

Final multiple regression relationship:

Coefficients

Term                   Coef      SE Coef               T-Value               P-Value

Constant            275641 40655                 6.78                    0.000   

Living Area         84.7      13.4                     6.33                    0.000   

Bedrooms          -66797  13089                 -5.10                   0.000

Bathrooms         93925   13660                 6.88                    0.000   

 

Model Summary

S                          R-sq      R-sq(adj)            R-sq(pred)

260320               18.97% 18.69%               18.21% 

What is the independent variable that has the most influence in predicting Price?  Explain your reasoning. 

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman