The Bivariate Cauchy Probability Density Function f is defined over the whole plane D = R² by 1 f(x, y) 1 1+ x² + y²

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
icon
Concept explainers
Question
## Definition 1: The Bivariate Cauchy Probability Density Function

The bivariate Cauchy probability density function \( f \) is defined over the whole plane \( \mathcal{D} = \mathbb{R}^2 \) by:

\[
f(x, y) = \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2
\]

## Problem 1

### (1.1) Verification of Probability Density Function

To verify that \( f \) is a probability density function, calculate:

\[
I := \iint_{\mathbb{R}^2} \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \, dA
\]

### (1.2) Locating the Mean

To locate the mean \( (\bar{x}, \bar{y}) \) of \( f \), calculate or determine by mathematical considerations:

\[
\bar{x} := \frac{1}{I} \iint_{\mathbb{R}^2} x \cdot \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \, dA
\]

\[
\bar{y} := \frac{1}{I} \iint_{\mathbb{R}^2} y \cdot \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \, dA
\]

### (1.3) Determining the Existence of Variance

To determine whether the variance exists, calculate:

\[
(\bar{x} - x)^2 := \frac{1}{I} \iint_{\mathbb{R}^2} (x - \bar{x})^2 \cdot \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \, dA
\]

\[
(\bar{y} - y)^2 := \frac{1}{I} \iint_{\mathbb{R}
Transcribed Image Text:## Definition 1: The Bivariate Cauchy Probability Density Function The bivariate Cauchy probability density function \( f \) is defined over the whole plane \( \mathcal{D} = \mathbb{R}^2 \) by: \[ f(x, y) = \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \] ## Problem 1 ### (1.1) Verification of Probability Density Function To verify that \( f \) is a probability density function, calculate: \[ I := \iint_{\mathbb{R}^2} \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \, dA \] ### (1.2) Locating the Mean To locate the mean \( (\bar{x}, \bar{y}) \) of \( f \), calculate or determine by mathematical considerations: \[ \bar{x} := \frac{1}{I} \iint_{\mathbb{R}^2} x \cdot \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \, dA \] \[ \bar{y} := \frac{1}{I} \iint_{\mathbb{R}^2} y \cdot \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \, dA \] ### (1.3) Determining the Existence of Variance To determine whether the variance exists, calculate: \[ (\bar{x} - x)^2 := \frac{1}{I} \iint_{\mathbb{R}^2} (x - \bar{x})^2 \cdot \frac{1}{\pi} \cdot \left( \frac{1}{1 + x^2 + y^2} \right)^2 \, dA \] \[ (\bar{y} - y)^2 := \frac{1}{I} \iint_{\mathbb{R}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON