the area of the les triangle Te with 1,3), R(2, 4, 62 SC1F-1,9). 1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Can anyone please help me to solve this problem? I am stuck!
**Problem Statement: Triangle Area Calculation**

Given the vertices of a triangle:

- \( Q(5, 1, 3) \)
- \( R(2, 4, 6) \)
- \( S(-1, 4, 9) \)

Find the area of the triangle.

**Solution Approach: Determinant Method**

To find the area of a triangle in 3D space given the vertices \( (x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3) \), you can use the following determinant formula:

\[
\text{Area} = \frac{1}{2} \times \sqrt{(y_2z_3 + y_3z_1 + y_1z_2 - y_3z_2 - y_1z_3 - y_2z_1)^2 + (z_2x_3 + z_3x_1 + z_1x_2 - z_3x_2 - z_1x_3 - z_2x_1)^2 + (x_2y_3 + x_3y_1 + x_1y_2 - x_3y_2 - x_1y_3 - x_2y_1)^2}
\]

Let's compute the area using these coordinates.
Transcribed Image Text:**Problem Statement: Triangle Area Calculation** Given the vertices of a triangle: - \( Q(5, 1, 3) \) - \( R(2, 4, 6) \) - \( S(-1, 4, 9) \) Find the area of the triangle. **Solution Approach: Determinant Method** To find the area of a triangle in 3D space given the vertices \( (x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3) \), you can use the following determinant formula: \[ \text{Area} = \frac{1}{2} \times \sqrt{(y_2z_3 + y_3z_1 + y_1z_2 - y_3z_2 - y_1z_3 - y_2z_1)^2 + (z_2x_3 + z_3x_1 + z_1x_2 - z_3x_2 - z_1x_3 - z_2x_1)^2 + (x_2y_3 + x_3y_1 + x_1y_2 - x_3y_2 - x_1y_3 - x_2y_1)^2} \] Let's compute the area using these coordinates.
**Task: Finding the Area of a Triangle**

**Problem Statement:**

Find the area of the triangle with vertices at:
- \( Q(5, 7) \)
- \( R(2, 4) \)
- \( S(-1, 4) \)

[__] (Blank space for calculations or answers)

**Instructions:**

To find the area of a triangle given its vertices on a coordinate plane, you can use the formula:

\[
\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
\]

Where \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) are the coordinates of the vertices \(Q\), \(R\), and \(S\). 

Plug in the coordinates and perform the calculation to determine the area of the triangle.
Transcribed Image Text:**Task: Finding the Area of a Triangle** **Problem Statement:** Find the area of the triangle with vertices at: - \( Q(5, 7) \) - \( R(2, 4) \) - \( S(-1, 4) \) [__] (Blank space for calculations or answers) **Instructions:** To find the area of a triangle given its vertices on a coordinate plane, you can use the formula: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Where \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) are the coordinates of the vertices \(Q\), \(R\), and \(S\). Plug in the coordinates and perform the calculation to determine the area of the triangle.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning